Christina G Siontorou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6738589/publications.pdf

Version: 2024-02-01

304602 330025 1,415 67 22 37 citations h-index g-index papers 70 70 70 1325 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	University-Industry Relationships for the Development and Commercialization of Biosensors. , 2022, , 707-722.		O
2	Based on Lipid Films for Environmental Applications. Environmental Chemistry for A Sustainable World, 2021, , 97-108.	0.3	O
3	Nanosensors Based on Lipid Membranes for the Rapid Detection of Food Toxicants. Environmental Chemistry for A Sustainable World, 2021, , 247-259.	0.3	O
4	Boosting the advantages of biosensors: Niche applicability and fitness for environmental purpose. Trends in Environmental Analytical Chemistry, 2021, 32, e00146.	5.3	4
5	A Ready-to-Use Metal-Supported Bilayer Lipid Membrane Biosensor for the Detection of Phenol in Water. Membranes, 2021, 11, 871.	1.4	1
6	Metal-supported self-assembled bilayer lipid membrane incorporated with peroxidase for the detection of peroxide. Results in Engineering, 2021, 12, 100312.	2.2	2
7	Critical success factors for total quality management in primary and secondary education. International Journal of Services and Operations Management, 2021, 40, 564.	0.1	4
8	University-Industry Relationships for the Development and Commercialization of Biosensors. , 2020, , $1\text{-}16$.		0
9	Challenges and Future Prospects of Nanoadvanced Sensing Technology. , 2019, , 375-396.		1
10	Recent Lipid Membrane-Based Biosensing Platforms. Applied Sciences (Switzerland), 2019, 9, 1745.	1.3	22
11	Applications of Lipid Membranes-based Biosensors for the Rapid Detection of Food Toxicants and Environmental Pollutants., 2019,, 285-297.		0
12	University-Industry Relationships for the Development and Commercialization of Biosensors. , 2019, , 1-16.		0
13	Novel Biosensors for the Rapid Detection of Toxicants in Foods. Advances in Food and Nutrition Research, 2018, 84, 57-102.	1.5	16
14	The Application of Lipid Membranes in Biosensing. Membranes, 2018, 8, 108.	1.4	17
15	Application of Biosensors Based on Lipid Membranes for the Rapid Detection of Toxins. Biosensors, 2018, 8, 61.	2.3	13
16	Potentiometric Biosensing Applications of Graphene Electrodes with Stabilized Polymer Lipid Membranes. Chemosensors, 2018, 6, 25.	1.8	2
17	Lipid Membrane Nanosensors for Environmental Monitoring: The Art, the Opportunities, and the Challenges. Sensors, 2018, 18, 284.	2.1	28
18	Designing biosensor networks for the environmental risk assessment of aquatic systems. Critical Reviews in Environmental Science and Technology, 2017, 47, 40-63.	6.6	7

#	Article	IF	Citations
19	Development of an Electrochemical Biosensor for the Rapid Detection of Saxitoxin Based on Air Stable Lipid Films with Incorporated Antiâ€STX Using Graphene Electrodes. Electroanalysis, 2017, 29, 990-997.	1.5	57
20	Point-of-Care and Implantable Biosensors in Cancer Research and Diagnosis., 2017,, 115-132.		3
21	Artificial Lipid Membranes: Past, Present, and Future. Membranes, 2017, 7, 38.	1.4	124
22	Nano-enabled medical devices based on biosensing principles: technology basis and new concepts. AIMS Materials Science, 2017, 4, 250-266.	0.7	5
23	Protein-Based Graphene Biosensors: Optimizing Artificial Chemoreception in Bilayer Lipid Membranes. Membranes, 2016, 6, 43.	1.4	6
24	Electrochemical Biosensor for Naphthalene Acetic Acid in Fruits and Vegetables Based on Lipid Films with Incorporated Auxinâ€binding Protein Receptor Using Graphene Electrodes. Electroanalysis, 2016, 28, 2171-2177.	1.5	24
25	Development of an Electrochemical Biosensor for the Rapid Detection of Cholera Toxin Based on Air Stable Lipid Films with Incorporated Ganglioside GM1 Using Graphene Electrodes. Electroanalysis, 2016, 28, 1584-1590.	1.5	31
26	A biosensor platform for soil management: the case of nitrites. Journal of Cleaner Production, 2016, 111, 133-142.	4.6	21
27	Determining the Sources of Measurement Uncertainty in Environmental Cell-Based Biosensing. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 794-804.	2.4	3
28	A methodological combined framework for roadmapping biosensor research: a fault tree analysis approach within a strategic technology evaluation frame. Critical Reviews in Biotechnology, 2014, 34, 31-55.	5.1	19
29	Nanobodies as novel agents for disease diagnosis and therapy. International Journal of Nanomedicine, 2013, 8, 4215.	3.3	103
30	On the optimal design of molecular sensing interfaces with lipid bilayer assemblies $\hat{a} \in A$ knowledge based approach. , 2012, , .		0
31	Endogenous estimation of safety coefficient for optimal design of biochemical reactors at industrial level. , 2012, , .		1
32	Managing Uncertainty in Environmental Decision-Making Within Ecological Constraints -A Model Based Reasoning Approach. Procedia Engineering, 2012, 42, 1137-1149.	1.2	4
33	Thinking by Analogy for Technology Transfer from Catalysts to Biosensors and Vice versa–a Knowledge-based Approach. Procedia Engineering, 2012, 42, 1889-1896.	1.2	1
34	Computer aided design of medicinal products based on interactive chemical/herbal ingredients – An R&D approach. , 2012, , .		0
35	Creating a specific domain ontology for supporting R&D in the science-based sector – The case of biosensors. Expert Systems With Applications, 2012, 39, 9994-10015.	4.4	22
36	Rapid Flow Injection Electrochemical Detection of Arochlor 1242 Using Stabilized Lipid Membranes with Incorporated Sheep antiâ€PCB Antibody. Electroanalysis, 2012, 24, 495-501.	1.5	13

#	Article	IF	Citations
37	Error identification/propagation/remediation in biomonitoring surveysâ€"A knowledge-based approach towards standardization via fault tree analysis. Ecological Indicators, 2011, 11, 564-581.	2.6	9
38	Designing a reliable leak bio-detection system for natural gas pipelines. Journal of Hazardous Materials, 2011, 186, 35-58.	6.5	52
39	Innovation in biotechnology: moving from academic research to product development—the case of biosensors. Critical Reviews in Biotechnology, 2010, 30, 79-98.	5.1	34
40	KNOWLEDGE MANAGEMENT FOR LAKE RESTORATION STRATEGY IN PROTECTED AREAS. , 2010, , .		0
41	Natural Chemoreception in the Service of Environmental Biosensing—A Computer Aided Design Framework for Biomass Monitoring. , 2009, , .		0
42	Measuring Uncertainty in Lichen Biomonitoring of Atmospheric Pollution: The Case of \$hbox{SO}_{2}\$. IEEE Transactions on Instrumentation and Measurement, 2009, 58, 3207-3220.	2.4	4
43	Computational and Experimental Biomonitoring Transboundary Pollution for Optimizing Industrial Effluent Parameters. , 2009, , .		0
44	A new scheme for biomonitoring heavy metal concentrations in semi-natural wetlands. Journal of Hazardous Materials, 2008, 158, 340-358.	6.5	21
45	Carbohydrate Detection Failure Analysis via Biosensoring. IEEE Transactions on Instrumentation and Measurement, 2008, 57, 2856-2867.	2.4	13
46	A novel system for environmental monitoring through a cooperative/synergistic scheme between bioindicators and biosensors. Journal of Environmental Management, 2007, 82, 221-239.	3.8	29
47	Moving from Spontaneous to Cooperative/Concurrent R&D in Biotechnology - The Case of Biosensors. , 2006, , .		0
48	A Knowledge-Based Approach to Environmental Biomonitoring. Environmental Monitoring and Assessment, 2006, 123, 167-197.	1.3	18
49	Carbohydrate Detection Failure Analysis via Biosensoring. , 2006, , .		2
50	Carbohydrate Detection Failure Analysis via Biosensoring. Conference Record - IEEE Instrumentation and Measurement Technology Conference, 2006, , .	0.0	0
51	Flow injection analysis of carbofuran in foods using air stable lipid film based acetylcholinesterase biosensor. Analytica Chimica Acta, 2005, 537, 169-177.	2.6	53
52	Investigating the Causes of Biosensor SNR Decrease by Means of Fault Tree Analysis. IEEE Transactions on Instrumentation and Measurement, 2005, 54, 1395-1406.	2.4	28
53	Flow Injection Monitoring of Aflatoxin M1 in Cheese Using Filter-Supported Bilayer Lipid Membranes with Incorporated DNA. Electroanalysis, 2000, 12, 747-751.	1.5	22
54	Flow Injection Monitoring and Analysis of Mixtures of Hydrazine Compounds Using Filter-Supported Bilayer Lipid Membranes with Incorporated DNA. Analytical Chemistry, 2000, 72, 180-186.	3.2	53

#	Article	IF	CITATIONS
55	Rapid methods for detection of Aflatoxin M1 based on electrochemical transduction by self-assembled metal-supported bilayer lipid membranes (s-BLMs) and on interferences with transduction of DNA hybridization. Electrochimica Acta, 1998, 43, 3611-3617.	2.6	34
56	DNA Biosensor Based on Self-Assembled Bilayer Lipid Membranes for the Detection of Hydrazines. Electroanalysis, 1998, 10, 691-694.	1.5	28
57	A Triazine Herbicide Minisensor Based on Surface-Stabilized Bilayer Lipid Membranes. Analytical Chemistry, 1997, 69, 3109-3114.	3.2	39
58	Hemoglobin modified bilayer lipid membranes (BLMs) biosensor for carbon dioxide detection. Bioelectrochemistry, 1997, 42, 71-75.	1.0	20
59	A carbon dioxide biosensor based on hemoglobin incorporated in metal supported bilayer lipid membranes (BLMs): Investigations for enhancement of response characteristics by using platelet-activating factor. Electroanalysis, 1997, 9, 1043-1048.	1.5	14
60	Detection of DNA hybridization using self-assembled bilayer lipid membranes (BLMs). Electroanalysis, 1997, 9, 1067-1071.	1.5	36
61	Biosensors based on bilayer lipid membranes for automated continuous monitoring or rapid screening of environmental pollutants. Laboratory Robotics and Automation, 1997, 9, 285-295.	0.3	7
62	Cyanide ion minisensor based on methemoglobin incorporated in metal supported self-assembled bilayer lipid membranes and modified with platelet-activating factor. Analytica Chimica Acta, 1997, 355, 227-234.	2.6	25
63	Ammonium Ion Minisensors from Self-Assembled Bilayer Lipid Membranes Using Gramicidin as an Ionophore. Modulation of Ammonium Selectivity by Platelet-Activating Factor. Analytical Chemistry, 1996, 68, 1735-1741.	3.2	97
64	Evaluation of a glassy carbon electrode modified by a bilayer lipid membrane with incorporated DNA. Talanta, 1996, 43, 1137-1144.	2.9	50
65	Stabilized bilayer lipid membranes for flow-through experiments. Electroanalysis, 1995, 7, 531-536.	1.5	63
66	Bilayer lipid membranes as electrochemical detectors for flow injection immunoanalysis. Electroanalysis, 1995, 7, 1082-1089.	1.5	27
67	Bilayer Lipid Membranes for Flow Injection Monitoring of Acetylcholine, Urea, and Penicillin. Analytical Chemistry, 1995, 67, 936-944.	3.2	79