MaÅ,gorzata Garnczarska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/673854/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Different Modes of Hydrogen Peroxide Action During Seed Germination. Frontiers in Plant Science, 2016, 7, 66.	1.7	284
2	Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Science, 2015, 231, 94-113.	1.7	134
3	Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. Journal of Plant Physiology, 2015, 183, 1-12.	1.6	130
4	Molecular processes induced in primed seeds—increasing the potential to stabilize crop yields under drought conditions. Journal of Plant Physiology, 2016, 203, 116-126.	1.6	110
5	Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review. International Journal of Molecular Sciences, 2022, 23, 5186.	1.8	103
6	A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. Journal of Plant Physiology, 2006, 163, 1207-1220.	1.6	98
7	Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots. Plant Physiology and Biochemistry, 2004, 42, 233-240.	2.8	48
8	New Insight on Water Status in Germinating Brassica napus Seeds in Relation to Priming-Improved Germination. International Journal of Molecular Sciences, 2019, 20, 540.	1.8	38
9	Water uptake and distribution in germinating lupine seeds studied by magnetic resonance imaging and NMR spectroscopy. Physiologia Plantarum, 2007, 130, 23-32.	2.6	36
10	Response of the ascorbate–glutathione cycle to re-aeration following hypoxia in lupine roots. Plant Physiology and Biochemistry, 2005, 43, 583-590.	2.8	35
11	Changes in water status and water distribution in maturing lupin seeds studied by MR imaging and NMR spectroscopy. Journal of Experimental Botany, 2007, 58, 3961-3969.	2.4	33
12	Metabolic and ultrastructural responses of lupine embryo axes to sugar starvation. Journal of Plant Physiology, 2003, 160, 311-319.	1.6	31
13	Re-aeration – induced oxidative stress and antioxidative defenses in hypoxically pretreated lupine roots. Journal of Plant Physiology, 2004, 161, 415-422.	1.6	26
14	Drought stress memory and subsequent drought stress tolerance in plants. , 2020, , 115-131.		21
15	A comparative study of water distribution and dehydrin protein localization in maturing pea seeds. Journal of Plant Physiology, 2008, 165, 1940-1946.	1.6	20
16	Ascorbate and glutathione metabolism in embryo axes and cotyledons of germinating lupine seeds. Biologia Plantarum, 2008, 52, 681-686.	1.9	19
17	Differential response of antioxidative enzymes in embryonic axes and cotyledons of germinating lupine seeds. Acta Physiologiae Plantarum, 2008, 30, 427-432.	1.0	19
18	Metabolic responses of Lemna minor to lead ions I. Growth, chlorophyll level and activity of fermentative enzymes. Acta Physiologiae Plantarum, 2000, 22, 423-427	1.0	18

#	Article	IF	CITATIONS
19	Ability of lupine seeds to germinate and to tolerate desiccation as related to changes in free radical level and antioxidants in freshly harvested seeds. Plant Physiology and Biochemistry, 2009, 47, 56-62.	2.8	15
20	Lupine embryo axes under salinity stress. II. Mitochondrial proteome response. Acta Physiologiae Plantarum, 2013, 35, 2383-2392.	1.0	14
21	Metabolic responses of Lemna minor to lead ions II. Induction of antioxidant enzymes in roots. Acta Physiologiae Plantarum, 2000, 22, 429-432.	1.0	13
22	Autophagic Machinery of Plant Peroxisomes. International Journal of Molecular Sciences, 2019, 20, 4754.	1.8	13
23	Hypoxic induction of alcohol and lactate dehydrogenases in lupine seedlings. Acta Physiologiae Plantarum, 2002, 24, 265-272.	1.0	10
24	Lupine embryo axes under salinity stress. I. Ultrastructural response. Acta Physiologiae Plantarum, 2013, 35, 2219-2228.	1.0	8
25	Endogenous Polyamines and Ethylene Biosynthesis in Relation to Germination of Osmoprimed Brassica napus Seeds under Salt Stress. International Journal of Molecular Sciences, 2022, 23, 349.	1.8	8
26	Metabolism of amino acids in germinating yellow lupin seeds. II. Pathway of conversion of aspartate to alanine during the imbibition. Acta Physiologiae Plantarum, 1998, 20, 123-127.	1.0	5
27	Changes in the activity and isozyme patterns of malate dehydrogenase in root nodules of yellow lupine. Acta Physiologiae Plantarum, 1999, 21, 149-153.	1.0	2
28	Hypoxia induces anoxia tolerance in roots and shoots of lupine seedlings. Acta Physiologiae Plantarum, 2003, 25, 47-53.	1.0	2
29	Alcohol dehydrogenase and its relation to respiratory pathways in lupine root nodules. Acta Biochimica Polonica, 1991, 38, 37-41.	0.3	2
30	Short-term effect of nitrate or water stress on nitrate reduction and malate fermentation pathways in yellow lupine (Lupinus luteus) nodules. Acta Physiologiae Plantarum, 2009, 31, 1249-1254.	1.0	1
31	The influence of lead ions on nitrogen metabolism of lupin embryos cultivated in vitro Acta Biochimica Polonica, 1993, 40, 139-140.	0.3	1
32	The influence of lead ions on nitrogen metabolism of lupin embryos cultivated in vitro. Acta Biochimica Polonica, 1993, 40, 139-40.	0.3	1
33	Ultrastructural and antioxidative changes in lupine embryo axes in response to salt stress. Acta Societatis Botanicorum Poloniae, 2013, 82, 303-311.	0.8	0