Teruhiko Baba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6738177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction between DNA–cationic liposome complexes and erythrocytes is an important factor in systemic gene transfer via the intravenous route in mice: the role of the neutral helper lipid. Gene Therapy, 2001, 8, 677-686.	4.5	168
2	Molecular Dynamics Study on the Effects of Chain Branching on the Physical Properties of Lipid Bilayers:Â 2. Permeability. Journal of Physical Chemistry B, 2004, 108, 9346-9356.	2.6	115
3	Self-assembly of synthetic glycolipid/water systems. Advances in Colloid and Interface Science, 1999, 80, 233-270.	14.7	105
4	Molecular Dynamics Study of Bipolar Tetraether Lipid Membranes. Biophysical Journal, 2005, 89, 3195-3202.	0.5	77
5	Comparative molecular dynamics study of ether- and ester-linked phospholipid bilayers. Journal of Chemical Physics, 2004, 121, 9648-9654.	3.0	70
6	Formation and characterization of planar lipid bilayer membranes from synthetic phytanyl-chained glycolipids. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1421, 91-102.	2.6	61
7	Molecular Dynamics Study on the Effect of Chain Branching on the Physical Properties of Lipid Bilayers:  Structural Stability. Journal of Physical Chemistry B, 2003, 107, 14030-14035.	2.6	58
8	Hydration and Molecular Motions in Synthetic Phytanyl-Chained Glycolipid Vesicle Membranes. Biophysical Journal, 2001, 81, 3377-3386.	0.5	45
9	Physical properties and structure of poly(ethylene glycol)-silk fibroin conjugate films. Polymer, 1997, 38, 487-490.	3.8	44
10	Dynamics of a highly branched lipid bilayer: a molecular dynamics study. Chemical Physics Letters, 2004, 390, 35-40.	2.6	41
11	Formation of stable nanodiscs by bihelical apolipoprotein A″ mimetic peptide. Journal of Peptide Science, 2016, 22, 116-122.	1.4	38
12	Interglycolipid Membrane Interactions: pH-Dependent Aggregation of Nonionic Synthetic Glycolipid Vesicles. Journal of Colloid and Interface Science, 2000, 223, 235-243.	9.4	36
13	Physicochemical Studies of Bacteriorhodopsin Reconstituted in Partially Fluorinated Phosphatidylcholine Bilayers. Journal of Physical Chemistry B, 2013, 117, 5422-5429.	2.6	24
14	Synthetic Phytanyl-Chained Glycolipid Vesicle Membrane as a Novel Matrix for Functional Reconstitution of Cyanobacterial Photosystem II Complex. Biochemical and Biophysical Research Communications, 1999, 265, 734-738.	2.1	22
15	Highly fluorinated C18 fatty acids: synthesis and interfacial properties. Journal of Fluorine Chemistry, 2004, 125, 1959-1964.	1.7	22
16	Synthesis of phospholipids containing perfluorooctyl group and their interfacial properties. Journal of Fluorine Chemistry, 2007, 128, 133-138.	1.7	17
17	Hemolytic activity of polyoxyethylene cholesteryl ethers. Colloid and Polymer Science, 1987, 265, 943-949.	2.1	16
18	Forces that Control pH-Dependent Aggregation of Nonionic Glycolipid Vesicles. Langmuir, 2001, 17, 1853-1859.	3.5	15

Teruhiko Baba

#	Article	IF	CITATIONS
19	Heparin promotes fibril formation by the Nâ€ŧerminal fragment of amyloidogenic apolipoprotein Aâ€ŀ. FEBS Letters, 2016, 590, 3492-3500.	2.8	15
20	Mechanisms of aggregation and fibril formation of the amyloidogenic N-terminal fragment of apolipoprotein A-I. Journal of Biological Chemistry, 2019, 294, 13515-13524.	3.4	15
21	Synthesis and characterization of partially fluorinated stearolic acid analogs: Effect of their fluorine content on the monolayer at the air–water interface. Journal of Fluorine Chemistry, 2007, 128, 120-126.	1.7	14
22	Effect of Partial Fluorination in the Myristoyl Groups on Thermal and Interfacial Properties of Dimyristoylphosphatidylcholine. Chemistry Letters, 2012, 41, 1495-1497.	1.3	14
23	pH and salt-induced reversible aggregation of nonionic synthetic glycolipid vesicles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207, 215-221.	4.7	13
24	Synthesis and monolayer properties of double-chained phosphatidylcholines containing perfluoroalkyl groups of different length. Journal of Fluorine Chemistry, 2008, 129, 686-690.	1.7	13
25	Non-ideal mixing of dimyristoylphosphatidylcholine with its partially fluorinated analogue in hydrated bilayers. Chemical Physics Letters, 2013, 559, 107-111.	2.6	13
26	Amyloidogenic Mutation Promotes Fibril Formation of the N-terminal Apolipoprotein A-I on Lipid Membranes. Journal of Biological Chemistry, 2015, 290, 20947-20959.	3.4	12
27	Dynamic interaction between oppositely charged vesicles: Aggregation, lipid mixing, and disaggregation. Journal of Colloid and Interface Science, 2008, 320, 611-614.	9.4	9
28	Effect of Phosphatidylserine and Cholesterol on Membrane-mediated Fibril Formation by the N-terminal Amyloidogenic Fragment of Apolipoprotein A-I. Scientific Reports, 2018, 8, 5497.	3.3	9
29	Effect of liposome surface modification with water-soluble phospholipid polymer chain-conjugated lipids on interaction with human plasma proteins. Journal of Materials Chemistry B, 2022, 10, 2512-2522.	5.8	9
30	Dynamic Molecular Behavior of Semi-Fluorinated Oleic, Elaidic and Stearic Acids in the Liquid State. Journal of Oleo Science, 2012, 61, 649-657.	1.4	8
31	Effect of perfluoroalkyl chain length on monolayer behavior of partially fluorinated oleic acid molecules at the air–water interface. Chemistry and Physics of Lipids, 2013, 172-173, 31-39.	3.2	8
32	Interaction of polyoxyethylene cholesteryl ethers with liposomal membranes. Colloid and Polymer Science, 1989, 267, 201-208.	2.1	7
33	Design and Characterization of Partially Fluorinated Lipid Liquid-Crystal Membranes as Biomaterials. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 206-216.	0.1	7
34	Anomeric Effects on the Stability of Bilayers of Galactosylphytoceramides and on the Interaction with Phospholipids. Langmuir, 2000, 16, 7156-7161.	3.5	6
35	Effect of the fluorination degree of hydrophobic chains on the monolayer behavior of unsaturated diacylphosphatidylcholines bearing partially fluorinated 9-octadecynoyl (stearoloyl) groups at the air〓water interface. Colloids and Surfaces B: Biointerfaces, 2014, 123, 246-253.	5.0	5
36	Aggregation behavior of short-chained archaeal phospholipid analogs: Contribution of methyl branches to lipid hydrophobicity and membrane formability. Colloids and Interface Science Communications, 2019, 32, 100200.	4.1	4

Teruhiko Baba

#	Article	IF	CITATIONS
37	Effect of the fluorination degree of partially fluorinated octyl-phosphocholine surfactants on their interfacial properties and interactions with purple membrane as a membrane protein model. Chemistry and Physics of Lipids, 2020, 227, 104870.	3.2	4
38	Effect of Organic Solvents as Gelating Agents on Performance of Chitosan Membranes for Ultrafiltration Kobunshi Ronbunshu, 1993, 50, 35-40.	0.2	3
39	Membrane properties of ether-type phosphatidylcholine bearing partially fluorinated C18-monoacetylenic chains and their applicability to membrane protein reconstitution matrices. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111459.	5.0	3
40	Lipid Layer-Immobilized Membranes Prepared by Ultrafiltration and Their Gas Permeation Properties. Journal of Colloid and Interface Science, 1994, 163, 259-261.	9.4	1
41	Aggregation Behavior of Nonionic Clycolipid Vesicles in Acidic Region. Journal of Dispersion Science and Technology, 2000, 21, 907-913.	2.4	1
42	Preparation of N-Propionyl Chitosan Membranes for Ultrafiltration and Their Properties of Chemical Resistance and Fouling Kobunshi Ronbunshu, 1994, 51, 523-529.	0.2	0
43	Permeation property and intramembrane environments of synthetic phytanyl-chained glyceroglycolipid membranes. Membrane Science and Technology, 2003, , 605-631.	0.5	0
44	Membrane Properties of Modeled Archaeal Glycolipids and Their Biotechnological Application Membrane, 2002, 27, 303-309.	0.0	0
45	Artificial Phytanyl-Chained Glycolipid Vesicle Membranes with Low Proton Permeability are Suitable for Proton Pump Reconstitution Matrices. , 2004, , 143-150.		0
46	Glycolipid Liquid Crystals as Novel Matrices for Membrane Protein Manipulations. , 2004, , 129-141.		0
47	平衡拡張圧 PURE systemãëwPURE system ãfãfã,¬ãf³ã€€æ¸;ç°çš"相互作ç"`ï¼^ã«ã,ˆã,‹Ï€é›»åã4 68, 267-267.	®éžå±€åœ 0.1	"化).
48	Evaluation of gas diffusion coefficients in membrane by the volumetric permeability apparatus of the piston-feeder type Membrane, 1990, 15, 25-33.	0.0	0
49	Overview of Recent Progress in Studies on Archaeal–Type Artificial Lipid Membranes and Their Applications. Membrane, 2022, 47, 46-53.	0.0	Ο