
Simon Cocklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6737915/publications.pdf Version: 2024-02-01

SIMON COCKLIN

#	Article	IF	CITATIONS
1	Inhibitors of SARS-CoV-2 Entry: Current and Future Opportunities. Journal of Medicinal Chemistry, 2020, 63, 12256-12274.	6.4	183
2	Inhibition of Homologous Recombination in Human Cells by Targeting RAD51 Recombinase. Journal of Medicinal Chemistry, 2012, 55, 3011-3020.	6.4	115
3	Targeting BRCA1- and BRCA2-deficient cells with RAD52 small molecule inhibitors. Nucleic Acids Research, 2016, 44, 4189-4199.	14.5	81
4	Inhibiting Early-Stage Events in HIV-1 Replication by Small-Molecule Targeting of the HIV-1 Capsid. Journal of Virology, 2012, 86, 8472-8481.	3.4	73
5	Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. European Journal of Medicinal Chemistry, 2020, 190, 112085.	5.5	65
6	Mode of Action for Linear Peptide Inhibitors of HIV-1 gp120 Interactions. Biochemistry, 2004, 43, 1928-1938.	2.5	51
7	Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. European Journal of Medicinal Chemistry, 2018, 158, 478-492.	5.5	51
8	Structural Determinants for Affinity Enhancement of a Dual Antagonist Peptide Entry Inhibitor of Human Immunodeficiency Virus Type-1. Journal of Medicinal Chemistry, 2008, 51, 2638-2647.	6.4	45
9	lgG Binding Characteristics of Rhesus Macaque FcγR. Journal of Immunology, 2016, 197, 2936-2947.	0.8	43
10	Broad-Spectrum Anti-Human Immunodeficiency Virus (HIV) Potential of a Peptide HIV Type 1 Entry Inhibitor. Journal of Virology, 2007, 81, 3645-3648.	3.4	42
11	The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors. Retrovirology, 2008, 5, 89.	2.0	42
12	Discovery of novel 1,4-disubstituted 1,2,3-triazole phenylalanine derivatives as HIV-1 capsid inhibitors. RSC Advances, 2019, 9, 28961-28986.	3.6	42
13	Introducing metallocene into a triazole peptide conjugate reduces its offâ€rate and enhances its affinity and antiviral potency for HIVâ€1 gp120. Journal of Molecular Recognition, 2009, 22, 169-174.	2.1	41
14	Design, Synthesis, and Mechanism Study of Benzenesulfonamide-Containing Phenylalanine Derivatives as Novel HIV-1 Capsid Inhibitors with Improved Antiviral Activities. Journal of Medicinal Chemistry, 2020, 63, 4790-4810.	6.4	41
15	The high resolution structure of tyrocidine A reveals an amphipathic dimer. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1199-1207.	2.6	36
16	Bioisosteric Replacement as a Tool in Anti-HIV Drug Design. Pharmaceuticals, 2020, 13, 36.	3.8	35
17	Identification of a Smallâ€Molecule Inhibitor of HIVâ€1 Assembly that Targets the Phosphatidylinositol (4,5)â€bisphosphate Binding Site of the HIVâ€1 Matrix Protein. ChemMedChem, 2013, 8, 426-432.	3.2	34
18	An Optimized, Synthetic DNA Vaccine Encoding the Toxin A and Toxin B Receptor Binding Domains of Clostridium difficile Induces Protective Antibody Responses <i>In Vivo</i> . Infection and Immunity, 2014, 82, 4080-4091.	2.2	31

SIMON COCKLIN

#	Article	IF	CITATIONS
19	Discovery of a small-molecule antiviral targeting the HIV-1 matrix protein. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1132-1135.	2.2	30
20	Structure, Function, and Interactions of the HIV-1 Capsid Protein. Life, 2021, 11, 100.	2.4	28
21	Discovery and optimization of novel small-molecule HIV-1 entry inhibitors using field-based virtual screening and bioisosteric replacement. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5439-5445.	2.2	25
22	Interaction between the AAA+ ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding. Journal of Biological Chemistry, 2017, 292, 18392-18407.	3.4	25
23	Insertion of perilipin 3 into a glycero(phospho)lipid monolayer depends on lipid headgroup and acyl chain species. Journal of Lipid Research, 2016, 57, 1465-1476.	4.2	23
24	Structure–Activity Relationships of a Novel Capsid Targeted Inhibitor of HIV-1 Replication. Journal of Chemical Information and Modeling, 2014, 54, 3080-3090.	5.4	22
25	New RAD51 Inhibitors to Target Homologous Recombination in Human Cells. Genes, 2021, 12, 920.	2.4	22
26	Exploring Modifications of an HIV-1 Capsid Inhibitor: Design, Synthesis, and Mechanism of Action. , 2018, 5, .		21
27	Identification of a small molecule HIV-1 inhibitor that targets the capsid hexamer. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 824-828.	2.2	20
28	Core chemotype diversification in the HIV-1 entry inhibitor class using field-based bioisosteric replacement. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 228-234.	2.2	19
29	Interaction with CD4 and Antibodies to CD4-Induced Epitopes of the Envelope gp120 from a Microglial Cell-Adapted Human Immunodeficiency Virus Type 1 Isolate. Journal of Virology, 2005, 79, 6703-6713.	3.4	18
30	Phosphorylation of the RNA-binding protein Dazl by MAPKAP kinase 2 regulates spermatogenesis. Molecular Biology of the Cell, 2016, 27, 2341-2350.	2.1	17
31	Real-time monitoring of the membrane-binding and insertion properties of the cholesterol-dependent cytolysin anthrolysin O fromBacillus anthracis. Journal of Molecular Recognition, 2006, 19, 354-362.	2.1	16
32	Recent Advances in HIV-1 Gag Inhibitor Design and Development. Molecules, 2020, 25, 1687.	3.8	16
33	Rapid Optimization of the Metabolic Stability of a Human Immunodeficiency Virus Type-1 Capsid Inhibitor Using a Multistep Computational Workflow. Journal of Medicinal Chemistry, 2021, 64, 3747-3766.	6.4	16
34	Design, synthesis, and mechanism study of dimerized phenylalanine derivatives as novel HIV-1 capsid inhibitors. European Journal of Medicinal Chemistry, 2021, 226, 113848.	5.5	15
35	Composition and Orientation of the Core Region of Novel HIV-1 Entry Inhibitors Influences Metabolic Stability. Molecules, 2020, 25, 1430.	3.8	11
36	Design, synthesis, and mechanistic investigations of phenylalanine derivatives containing a benzothiazole moiety as HIV-1 capsid inhibitors with improved metabolic stability. European Journal of Medicinal Chemistry, 2022, 227, 113903.	5.5	11

SIMON COCKLIN

#	Article	IF	CITATIONS
37	Kinetic Characterization of Novel HIV-1 Entry Inhibitors: Discovery of a Relationship between Off-Rate and Potency. Molecules, 2018, 23, 1940.	3.8	8
38	Field-Based Affinity Optimization of a Novel Azabicyclohexane Scaffold HIV-1 Entry Inhibitor. Molecules, 2019, 24, 1581.	3.8	8
39	From design to biological mechanism evaluation of phenylalanine-bearing HIV-1 capsid inhibitors targeting a vital assembly interface. Chinese Chemical Letters, 2023, 34, 107611.	9.0	6
40	The spliceosomal proteins PPIH and PRPF4 exhibit bi-partite binding. Biochemical Journal, 2017, 474, 3689-3704.	3.7	4
41	Design, synthesis, and antiviral activity of phenylalanine derivatives as HIV-1 capsid inhibitors. Bioorganic and Medicinal Chemistry, 2021, 48, 116414.	3.0	4
42	Alprazolam Prompts HIV-1 Transcriptional Reactivation and Enhances CTL Response Through RUNX1 Inhibition and STAT5 Activation. Frontiers in Neurology, 2021, 12, 663793.	2.4	3
43	Clade-Specific Alterations within the HIV-1 Capsid Protein with Implications for Nuclear Translocation. Biomolecules, 2022, 12, 695.	4.0	3
44	Subtype Differences in the Interaction of HIV-1 Matrix with Calmodulin: Implications for Biological Functions. Biomolecules, 2021, 11, 1294.	4.0	1
45	Kinetic Characterization of Novel HIV-1 Entry Inhibitors: Discovery of a Relationship between Off-Rate and Potency. Proceedings (mdpi), 2019, 22, 77.	0.2	Ο