
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6736998/publications.pdf Version: 2024-02-01

MINWANC

#	Article	IF	CITATIONS
1	Preparation of NiO-N/C composites for electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Biomass Conversion and Biorefinery, 2023, 13, 17247-17254.	2.9	3
2	Self-hydrogen transfer hydrogenolysis of native lignin over Pd-PdO/TiO2. Applied Catalysis B: Environmental, 2022, 301, 120767.	10.8	33
3	Efficient benzaldehyde photosynthesis coupling photocatalytic hydrogen evolution. Journal of Energy Chemistry, 2022, 66, 52-60.	7.1	37
4	Oxygen-controlled photo-reforming of biopolyols to CO over Z-scheme CdS@g-C3N4. CheM, 2022, 8, 465-479.	5.8	61
5	ZnIn2S4 nanosheet growth on amine-functionalized SiO2 for the photocatalytic reduction of CO2. Catalysis Science and Technology, 2022, 12, 606-612.	2.1	7
6	Piezocatalytic oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furancarboxylic acid over Pt decorated hydroxyapatite. Applied Catalysis B: Environmental, 2022, 309, 121281.	10.8	23
7	Plasma-assisted construction of CdO quantum dots/CdS semi-coherent interface for the photocatalytic bio-CO evolution. Chem Catalysis, 2022, 2, 1394-1406.	2.9	23
8	Preparation of a Znln ₂ S ₄ –ZnAlO _x nanocomposite for photoreduction of CO ₂ to CO. Catalysis Science and Technology, 2021, 11, 3422-3427.	2.1	16
9	Sulfidation of nickel foam with enhanced electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Dalton Transactions, 2021, 50, 10922-10927.	1.6	21
10	Surface Sulfate Ion on CdS Catalyst Enhances Syngas Generation from Biopolyols. Journal of the American Chemical Society, 2021, 143, 6533-6541.	6.6	87
11	Photocatalytic Upgrading of Lignin Oil to Diesel Precursors and Hydrogen. Angewandte Chemie, 2021, 133, 16535-16539.	1.6	1
12	Photocatalytic Upgrading of Lignin Oil to Diesel Precursors and Hydrogen. Angewandte Chemie - International Edition, 2021, 60, 16399-16403.	7.2	44
13	Oxygen-vacancy-mediated catalytic methanation of lignocellulose at temperatures below 200°C. Joule, 2021, 5, 3031-3044.	11.7	39
14	Preparation of Sulfur-Modulated Nickel/Carbon Composites from Lignosulfonate for the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Applied Energy Materials, 2021, 4, 1182-1188.	2.5	37
15	Nitrogen modulated NiMoO ₄ with enhanced activity for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Catalysis Science and Technology, 2021, 11, 7326-7330.	2.1	14
16	Microwave-Assisted Catalytic Cleavage of C–C Bond in Lignin Models by Bifunctional Pt/CDC-SiC. ACS Sustainable Chemistry and Engineering, 2020, 8, 38-43.	3.2	20
17	A Schiff Base Modified Pd Catalyst for Selective Hydrogenation of 2-Butyne-1,4-diol to 2-Butene-1,4-diol. Catalysis Letters, 2020, 150, 2150-2157.	1.4	9
18	Photo splitting of bio-polyols and sugars to methanol and syngas. Nature Communications, 2020, 11, 1083.	5.8	72

#	Article	IF	CITATIONS
19	Generation of Strong Basic Site on Hypercrosslinked Porous Polymers as Catalyst for the Catalytic Oxidation of Methylene Compounds. ChemistrySelect, 2020, 5, 549-553.	0.7	4
20	Single Atom Alloy Preparation and Applications in Heterogeneous Catalysis. Chinese Journal of Chemistry, 2019, 37, 977-988.	2.6	47
21	Catalytic Scissoring of Lignin into Aryl Monomers. Advanced Materials, 2019, 31, e1901866.	11.1	112
22	Formate-assisted analytical pyrolysis of kraft lignin to phenols. Bioresource Technology, 2019, 278, 464-467.	4.8	33
23	Capping experiments reveal multiple surface active sites in CeO ₂ and their cooperative catalysis. RSC Advances, 2019, 9, 15229-15237.	1.7	17
24	Visible-light-driven coproduction of diesel precursors and hydrogen from lignocellulose-derived methylfurans. Nature Energy, 2019, 4, 575-584.	19.8	268
25	Organic Acid Anions Modified α-Co(OH) ₂ with Enhanced Activity for the Decomposition of Cyclohexyl Hydroperoxide. ACS Applied Nano Materials, 2019, 2, 2176-2183.	2.4	6
26	Wettability Control of Co–SiO ₂ @Ti–Si Core–Shell Catalyst to Enhance the Oxidation Activity with the In Situ Generated Hydroperoxide. ACS Applied Materials & Interfaces, 2019, 11, 14702-14712.	4.0	11
27	A Schiff-Base Modified Pt Nano-Catalyst for Highly Efficient Synthesis of Aromatic Azo Compounds. Catalysts, 2019, 9, 339.	1.6	8
28	Lignin: Catalytic Scissoring of Lignin into Aryl Monomers (Adv. Mater. 50/2019). Advanced Materials, 2019, 31, 1970355.	11.1	14
29	Photocatalytic Cleavage of C–C Bond in Lignin Models under Visible Light on Mesoporous Graphitic Carbon Nitride through π–Ĩ€ Stacking Interaction. ACS Catalysis, 2018, 8, 4761-4771.	5.5	205
30	Covalent triazine framework catalytic oxidative cleavage of lignin models and organosolv lignin. Green Chemistry, 2018, 20, 1270-1279.	4.6	57
31	Sustainable Productions of Organic Acids and Their Derivatives from Biomass via Selective Oxidative Cleavage of C–C Bond. ACS Catalysis, 2018, 8, 2129-2165.	5.5	188
32	NH ₂ OH–Mediated Lignin Conversion to Isoxazole and Nitrile. ACS Sustainable Chemistry and Engineering, 2018, 6, 3748-3753.	3.2	39
33	Carbon Modification of Nickel Catalyst for Depolymerization of Oxidized Lignin to Aromatics. ACS Catalysis, 2018, 8, 1614-1620.	5.5	134
34	Formation of Strong Basicity on Covalent Triazine Frameworks as Catalysts for the Oxidation of Methylene Compounds. ACS Applied Materials & Interfaces, 2018, 10, 12612-12617.	4.0	47
35	Effective Utilization of in Situ Generated Hydroperoxide by a Co–SiO ₂ @Ti–Si Core–Shell Catalyst in the Oxidation Reactions. ACS Catalysis, 2018, 8, 683-691.	5.5	18
36	Dealkylation of Lignin to Phenol via Oxidation–Hydrogenation Strategy. ACS Catalysis, 2018, 8, 6837-6843.	5.5	74

#	Article	IF	CITATIONS
37	New protocol of copper-catalyzed oxidative C(CO) C bond cleavage of aryl and aliphatic ketones to organic acids using O2 as the terminal oxidant. Journal of Catalysis, 2017, 346, 170-179.	3.1	64
38	Visible Light Gold Nanocluster Photocatalyst: Selective Aerobic Oxidation of Amines to Imines. ACS Catalysis, 2017, 7, 3632-3638.	5.5	165
39	Catalytic Oxidation of Alcohol to Carboxylic Acid with a Hydrophobic Cobalt Catalyst in Hydrocarbon Solvent. Chemistry - an Asian Journal, 2017, 12, 2404-2409.	1.7	17
40	Visible-Light-Driven Self-Hydrogen Transfer Hydrogenolysis of Lignin Models and Extracts into Phenolic Products. ACS Catalysis, 2017, 7, 4571-4580.	5.5	191
41	Oxidative C(OH) C bond cleavage of secondary alcohols to acids over a copper catalyst with molecular oxygen as the oxidant. Journal of Catalysis, 2017, 348, 160-167.	3.1	72
42	Photocatalytic coupling of amines to imidazoles using a Mo–ZnIn ₂ S ₄ catalyst. Green Chemistry, 2017, 19, 5172-5177.	4.6	44
43	Coupling reaction in catalytic decomposition of cyclohexyl hydroperoxide. Catalysis Communications, 2017, 101, 77-80.	1.6	6
44	Acid promoted C–C bond oxidative cleavage of β-O-4 and β-1 lignin models to esters over a copper catalyst. Green Chemistry, 2017, 19, 702-706.	4.6	113
45	Synthesis of 1,3-Diols from Isobutene and HCHO via Prins Condensation-Hydrolysis Using CeO2 Catalysts: Effects of Crystal Plane and Oxygen Vacancy. Inorganics, 2017, 5, 75.	1.2	5
46	Photocatalytic Oxidation–Hydrogenolysis of Lignin β-O-4 Models via a Dual Light Wavelength Switching Strategy. ACS Catalysis, 2016, 6, 7716-7721.	5.5	165
47	Alkali α-MnO ₂ /Na _x MnO ₂ collaboratively catalyzed ammoxidation–Pinner tandem reaction of aldehydes. Catalysis Science and Technology, 2016, 6, 7429-7436.	2.1	15
48	Two-Step, Catalytic C–C Bond Oxidative Cleavage Process Converts Lignin Models and Extracts to Aromatic Acids. ACS Catalysis, 2016, 6, 6086-6090.	5.5	207
49	Epoxide hydrolysis and alcoholysis reactions over crystalline Mo–V–O oxide. RSC Advances, 2016, 6, 70842-70847.	1.7	11
50	β-O-4 Bond Cleavage Mechanism for Lignin Model Compounds over Pd Catalysts Identified by Combination of First-Principles Calculations and Experiments. ACS Catalysis, 2016, 6, 5589-5598.	5.5	116
51	Thermally robust silica-enclosed Au 25 nanocluster and its catalysis. Chinese Journal of Catalysis, 2016, 37, 1787-1793.	6.9	20
52	Conversion of Isobutene and Formaldehyde to Diol using Praseodymium-Doped CeO ₂ Catalyst. ACS Catalysis, 2016, 6, 8248-8254.	5.5	55
53	Oxidative coupling of anilines to azobenzenes using heterogeneous manganese oxide catalysts. Catalysis Science and Technology, 2016, 6, 1940-1945.	2.1	26
54	Catalytic conversion of 5-hydroxymethylfurfural into 2,5-furandiamidine dihydrochloride. Green Chemistry, 2016, 18, 974-978.	4.6	26

#	Article	IF	CITATIONS
55	The cascade synthesis of α,β-unsaturated ketones via oxidative C–C coupling of ketones and primary alcohols over a ceria catalyst. Catalysis Science and Technology, 2016, 6, 1693-1700.	2.1	32
56	Cuprous Oxide Catalyzed Oxidative CC Bond Cleavage for CN Bond Formation: Synthesis of Cyclic Imides from Ketones and Amines. Angewandte Chemie - International Edition, 2015, 54, 14061-14065.	7.2	37
57	The cascade synthesis of quinazolinones and quinazolines using an α-MnO ₂ catalyst and tert-butyl hydroperoxide (TBHP) as an oxidant. Chemical Communications, 2015, 51, 9205-9207.	2.2	120
58	An investigation of the effects of CeO2 crystal planes on the aerobic oxidative synthesis of imines from alcohols and amines. Chinese Journal of Catalysis, 2015, 36, 1623-1630.	6.9	52
59	Preferential cleavage of C C bonds over C N bonds at interfacial CuO Cu2O sites. Journal of Catalysis, 2015, 330, 458-464.	3.1	18
60	What and where are the active sites of oxide-supported nanostructured metal catalysts?. Chinese Journal of Catalysis, 2014, 35, 453-456.	6.9	5
61	Superhydrophobic SiO2-based nanocomposite modified with organic groups as catalyst for selective oxidation of ethylbenzene. Journal of Materials Chemistry A, 2014, 2, 8126.	5.2	39
62	tert-Butyl hydroperoxide (TBHP)-mediated oxidative self-coupling of amines to imines over a α-MnO ₂ catalyst. Green Chemistry, 2014, 16, 2523-2527.	4.6	56
63	Designing a yolk–shell type porous organic network using a phenyl modified template. Chemical Communications, 2014, 50, 9079-9082.	2.2	16
64	Organic linker geometry controlled synthesis of coordination polymer spheres and their thermal transformation to yolk–shell metal oxides. Journal of Materials Chemistry A, 2014, 2, 15480-15487.	5.2	11
65	Investigations on the crystal plane effect of ceria on gold catalysis in the oxidative dehydrogenation of alcohols and amines in the liquid phase. Chemical Communications, 2014, 50, 292-294.	2.2	93
66	Mesoporous strong base supported cobalt oxide as a catalyst for the oxidation of ethylbenzene. Catalysis Science and Technology, 2014, 4, 3606-3610.	2.1	19
67	Nanocoating of magnetic cores with sulfonic acid functionalized shells for the catalytic dehydration of fructose to 5-hydroxymethylfurfural. Chinese Journal of Catalysis, 2014, 35, 703-708.	6.9	25
68	Promoted role of Cu(NO3)2 on aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over VOSO4. Applied Catalysis A: General, 2014, 482, 231-236.	2.2	46
69	Selective decomposition of cyclohexyl hydroperoxide by copper ion-containing quaternary ammonium salts in alkali-free medium. Catalysis Communications, 2013, 40, 55-58.	1.6	4
70	Preparation of hydrophobic hollow silica nanospheres with porous shells and their application in pollutant removal. RSC Advances, 2013, 3, 1158-1164.	1.7	26
71	Super-hydrophobic yolk–shell nanostructure with enhanced catalytic performance in the reduction of hydrophobic nitroaromatic compounds. Chemical Communications, 2013, 49, 9591.	2.2	33
72	Advances in selective catalytic transformation of ployols to value-added chemicals. Chinese Journal of Catalysis, 2013, 34, 492-507.	6.9	53

#	Article	IF	CITATIONS
73	Insights into support wettability in tuning catalytic performance in the oxidation of aliphatic alcohols to acids. Chemical Communications, 2013, 49, 6623.	2.2	47
74	Preparation of copper (II) ion-containing bisimidazolium ionic liquid bridged periodic mesoporous organosilica and the catalytic decomposition of cyclohexyl hydroperoxide. Catalysis Communications, 2012, 29, 149-152.	1.6	28
75	Gold nanoparticles confined in the interconnected carbon foams with high temperature stability. Chemical Communications, 2012, 48, 10404.	2.2	31
76	Synthesis and properties of furan-based imine-linked porous organic frameworks. Polymer Chemistry, 2012, 3, 2346.	1.9	66
77	Cobalt ammonia complex mediated preparation of hollow silica nanospheres with multi-nanochambers. Journal of Materials Chemistry, 2012, 22, 11904.	6.7	18
78	The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials. Journal of Materials Chemistry, 2012, 22, 3457.	6.7	165
79	Preparation of self-assembled cobalt hydroxide nanoflowers and the catalytic decomposition of cyclohexyl hydroperoxide. Journal of Materials Chemistry, 2011, 21, 12609.	6.7	34
80	Superhydrophobic materials as efficient catalysts for hydrocarbon selective oxidation. Chemical Communications, 2011, 47, 1336-1338.	2.2	58
81	Preparation of superhydrophobic cauliflower-like silica nanospheres with tunable water adhesion. Journal of Materials Chemistry, 2011, 21, 6962.	6.7	84
82	Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation. Nanoscale Research Letters, 2011, 6, 586.	3.1	57
83	Phenyl modification of Mnâ€containing mesoporous silica and catalytic oxidation of toluene. Journal of Chemical Technology and Biotechnology, 2010, 85, 283-287.	1.6	3
84	Vanadyl sulfate: A simple catalyst for oxidation of alcohols with molecular oxygen in combination with 2,2,6,6-tetramethyl-piperidyl-1-oxyl. Catalysis Communications, 2010, 11, 732-735.	1.6	31