
## Lina M Quesada-Ocampo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6736967/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Duration of Downy Mildew Control Achieved with Fungicides on Cucumber Under Florida Field<br>Conditions. Plant Disease, 2022, 106, 1167-1174.                                                                              | 0.7 | 5         |
| 2  | <i>Phytophthora capsici</i> Populations Are Structured by Host, Geography, and Fluopicolide Sensitivity. Phytopathology, 2022, 112, 1559-1567.                                                                             | 1.1 | 3         |
| 3  | Development, validation, and utility of species-specific diagnostic markers for detection of<br><i>Peronospora belbahrii</i> . Phytopathology, 2022, , .                                                                   | 1.1 | 1         |
| 4  | Clade-Specific Monitoring of Airborne <i>Pseudoperonospora</i> spp. Sporangia Using Mitochondrial<br>DNA Markers for Disease Management of Cucurbit Downy Mildew. Phytopathology, 2022, 112, 2110-2125.                    | 1.1 | 4         |
| 5  | Clade-Specific Biosurveillance of <i>Pseudoperonospora cubensis</i> Using Spore Traps for Precision<br>Disease Management of Cucurbit Downy Mildew. Phytopathology, 2021, 111, 312-320.                                    | 1.1 | 30        |
| 6  | Effects of Water Temperature, Inoculum Concentration and Age, and Sanitizers on Infection of<br><i>Ceratocystis fimbriata</i> , Causal Agent of Black Rot in Sweetpotato. Plant Disease, 2021, 105,<br>1365-1372.          | 0.7 | 4         |
| 7  | Assessment of fungicide product applications and program approaches for control of downy mildew on pickling cucumber in North Carolina. Crop Protection, 2021, 140, 105412.                                                | 1.0 | 22        |
| 8  | Sweetpotato Root Development Influences Susceptibility to Black Rot Caused by the Fungal Pathogen<br><i>Ceratocystis fimbriata</i> . Phytopathology, 2021, 111, 1660-1669.                                                 | 1.1 | 8         |
| 9  | A Multiplex TaqMan qPCR Assay for Detection and Quantification of Clade 1 and Clade 2 Isolates of <i>Pseudoperonospora cubensis</i> and <i>Pseudoperonospora humuli</i> . Plant Disease, 2021, 105, 3154-3161.             | 0.7 | 9         |
| 10 | Fantastic Downy Mildew Pathogens and How to Find Them: Advances in Detection and Diagnostics.<br>Plants, 2021, 10, 435.                                                                                                    | 1.6 | 13        |
| 11 | A Comprehensive Characterization of Ecological and Epidemiological Factors Driving Perennation of<br><i>Podosphaera macularis</i> Chasmothecia on Hop ( <i>Humulus lupulus</i> ). Phytopathology, 2021,<br>111, 1972-1982. | 1.1 | 6         |
| 12 | Comparative Transcriptome Analysis of Two Contrasting Maize Inbred Lines Provides Insights on Molecular Mechanisms of Stalk Rot Resistance. PhytoFrontiers, 2021, 1, 314-329.                                              | 0.8 | 3         |
| 13 | The hop downy mildew pathogen <i>Pseudoperonospora humuli</i> . Molecular Plant Pathology, 2021, 22, 755-768.                                                                                                              | 2.0 | 11        |
| 14 | Uncovering the NLR Family of Disease Resistance Genes in Cultivated Sweetpotato and Wild Relatives.<br>Plant Pathology in the 21st Century, 2021, , 41-61.                                                                 | 0.6 | 1         |
| 15 | Managing Stubborn Oomycete Plant Pathogens. Plant Health Progress, 2021, 22, 215-218.                                                                                                                                      | 0.8 | 1         |
| 16 | The Effector Repertoire of the Hop Downy Mildew Pathogen Pseudoperonospora humuli. Frontiers in<br>Genetics, 2020, 11, 910.                                                                                                | 1.1 | 9         |
| 17 | Diagnostic Guide for Cucurbit Downy Mildew. Plant Health Progress, 2020, 21, 166-172.                                                                                                                                      | 0.8 | 13        |
| 18 | First Report of Downy Mildew, Caused by Peronospora effusa, on Spinach (Spinacia oleracea) in North<br>Carolina. Plant Health Progress, 2020, 21, 194-196.                                                                 | 0.8 | 1         |

| #  | Article                                                                                                                                                                                                                  | IF              | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 19 | Population Analyses Reveal Two Host-Adapted Clades of <i>Pseudoperonospora cubensis</i> , the<br>Causal Agent of Cucurbit Downy Mildew, on Commercial and Wild Cucurbits. Phytopathology, 2020,<br>110, 1578-1587.       | 1.1             | 51           |
| 20 | A Diagnostic Guide for Basil Downy Mildew. Plant Health Progress, 2020, 21, 77-81.                                                                                                                                       | 0.8             | 3            |
| 21 | Assessing the Role of Temperature, Inoculum Density, and Wounding on Disease Progression of the<br>Fungal Pathogen <i>Ceratocystis fimbriata</i> Causing Black Rot in Sweetpotato. Plant Disease, 2020,<br>104, 930-937. | 0.7             | 20           |
| 22 | Sensitivity of <i>Fusarium oxysporum</i> f. sp. <i>niveum</i> to Prothioconazole and Pydiflumetofen<br>In Vitro and Efficacy for Fusarium Wilt Management in Watermelon. Plant Health Progress, 2020, 21,<br>13-18.      | 0.8             | 17           |
| 23 | Hop Downy Mildew Caused by <i>Pseudoperonospora humuli</i> : A Diagnostic Guide. Plant Health<br>Progress, 2020, 21, 173-179.                                                                                            | 0.8             | 24           |
| 24 | First Report of Fusarium Wilt of Blackberry Caused by <i>Fusarium oxysporum</i> f. sp. <i>mori</i> in<br>North Carolina. Plant Disease, 2020, 104, 971.                                                                  | 0.7             | 5            |
| 25 | First Report of Bacterial Root Rot, Caused by <i>Dickeya dadantii</i> , on Sweetpotato ( <i>Ipomoea) Tj ETQq1 1 (</i>                                                                                                    | 0.784314<br>0.7 | rgBT /Overlo |
| 26 | Vine Removal Prior to Harvest, and Curing Duration and Temperature Affect the Incidence and Severity of Internal Necrosis in â€~Covington' Sweetpotato. HortTechnology, 2020, 30, 544-551.                               | 0.5             | 1            |
| 27 | Characterizing Sources of Resistance to Phytophthora Blight of Pepper Caused by <i>Phytophthora capsici</i> in North Carolina. Plant Health Progress, 2019, 20, 112-119.                                                 | 0.8             | 17           |
| 28 | Genome Sequencing and Transcriptome Analysis of the Hop Downy Mildew<br>Pathogen <i>Pseudoperonospora humuli</i> Reveal Species-Specific Genes for Molecular Detection.<br>Phytopathology, 2019, 109, 1354-1366.         | 1.1             | 43           |
| 29 | Black Rot of Sweetpotato: A Comprehensive Diagnostic Guide. Plant Health Progress, 2019, 20, 255-260.                                                                                                                    | 0.8             | 6            |
| 30 | Population Structure of Pythium ultimum from Greenhouse Floral Crops in Michigan. Plant Disease, 2019, 103, 859-867.                                                                                                     | 0.7             | 3            |
| 31 | Advances in Diagnostics of Downy Mildews: Lessons Learned from Other Oomycetes and Future Challenges. Plant Disease, 2018, 102, 265-275.                                                                                 | 0.7             | 36           |
| 32 | Analysis of microsatellites from transcriptome sequences of Phytophthora capsici and applications for population studies. Scientific Reports, 2018, 8, 5194.                                                             | 1.6             | 24           |
| 33 | Genetic Diversity, Fungicide Sensitivity, and Host Resistance to <i>Ceratocystis fimbriata</i> Infecting Sweetpotato in North Carolina. Plant Disease, 2017, 101, 994-1001.                                              | 0.7             | 21           |
| 34 | Molecular approaches for biosurveillance of the cucurbit downy mildew pathogen,<br><i>Pseudoperonospora cubensis</i> . Canadian Journal of Plant Pathology, 2017, 39, 282-296.                                           | 0.8             | 26           |
| 35 | Resurgence of cucurbit downy mildew in the United States: Insights from comparative genomic analysis of <i>Pseudoperonospora cubensis</i> . Ecology and Evolution, 2017, 7, 6231-6246.                                   | 0.8             | 30           |
| 36 | Analysis of microsatellites from the transcriptome of downy mildew pathogens and their application for characterization of <i>Pseudoperonospora</i> populations. Peerl, 2017, 5, e3266.                                  | 0.9             | 24           |

Lina M Quesada-Ocampo

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fungicide Rotation Programs for Managing Phytophthora Fruit Rot of Watermelon in Southeastern<br>United States. Plant Health Progress, 2017, 18, 28-34.                                                                  | 0.8 | 13        |
| 38 | Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato.<br>Phytopathology, 2016, 106, 909-919.                                                                                               | 1.1 | 25        |
| 39 | Susceptibility of Maize to Stalk Rot Caused by <i>Fusarium graminearum</i> Deoxynivalenol and Zearalenone Mutants. Phytopathology, 2016, 106, 920-927.                                                                   | 1.1 | 28        |
| 40 | Using Next-Generation Sequencing to Develop Molecular Diagnostics for <i>Pseudoperonospora cubensis</i> , the Cucurbit Downy Mildew Pathogen. Phytopathology, 2016, 106, 1105-1116.                                      | 1.1 | 58        |
| 41 | Cultural, Chemical, and Alternative Control Strategies for Rhizopus Soft Rot of Sweetpotato. Plant<br>Disease, 2016, 100, 1532-1540.                                                                                     | 0.7 | 14        |
| 42 | Regional and Temporal Population Structure of <i>Pseudoperonospora cubensis</i> in Michigan and<br>Ontario. Phytopathology, 2016, 106, 372-379.                                                                          | 1.1 | 28        |
| 43 | Resistance to Crown and Root Rot Caused by <i>Phytophthora capsici</i> in a Tomato Advanced<br>Backcross of <i>Solanum habrochaites</i> and <i>Solanum lycopersicum</i> . Plant Disease, 2016, 100,<br>829-835.          | 0.7 | 18        |
| 44 | First Report of <i>Plasmopara</i> aff. <i>australis</i> on <i>Luffa cylindrica</i> in the United States.<br>Plant Disease, 2016, 100, 537-537.                                                                           | 0.7 | 4         |
| 45 | Powdery Mildew Caused by <i>Podosphaera macularis</i> on Hop ( <i>Humulus lupulus</i> ) in North<br>Carolina. Plant Disease, 2016, 100, 1245.                                                                            | 0.7 | 4         |
| 46 | Characterization, Virulence, Epidemiology, and Management of Anthracnose in Celery. Plant Disease,<br>2015, 99, 1832-1840.                                                                                               | 0.7 | 6         |
| 47 | Resurgence of <i>Pseudoperonospora cubensis</i> : The Causal Agent of Cucurbit Downy Mildew.<br>Phytopathology, 2015, 105, 998-1012.                                                                                     | 1.1 | 80        |
| 48 | First Report of Phytophthora Fruit Rot on Bitter Gourd ( <i>Mormodica charantia</i> ) and Sponge<br>Gourd ( <i>Luffa cylindrica</i> ) Caused by <i>Phytophthora capsici</i> . Plant Health Progress, 2015, 16,<br>93-94. | 0.8 | 12        |
| 49 | Epidemiology and Population Biology of <i>Pseudoperonospora cubensis</i> : A Model System for<br>Management of Downy Mildews. Annual Review of Phytopathology, 2015, 53, 223-246.                                        | 3.5 | 84        |
| 50 | Resurgence of Cucurbit Downy Mildew in the United States: A Watershed Event for Research and<br>Extension. Plant Disease, 2015, 99, 428-441.                                                                             | 0.7 | 117       |
| 51 | First Report of Downy Mildew on Buffalo Gourd ( <i>Cucurbita foetidissima</i> ) Caused by<br><i>Pseudoperonospora cubensis</i> in North Carolina. Plant Disease, 2015, 99, 1861-1861.                                    | 0.7 | 14        |
| 52 | First Report of Plectosporium Blight on Pumpkin and Squash Caused by <i>Plectosporium tabacinum</i> in North Carolina. Plant Disease, 2015, 99, 724.                                                                     | 0.7 | 3         |
| 53 | Resurgence of Cucurbit Downy Mildew in the United States: A Watershed Event for Research and<br>Extension. Plant Disease, 2015, 4015, 1-14.                                                                              | 0.7 | 1         |
| 54 | Genetic Diversity, Population Structure, and Resistance to Phytophthora capsici of a Worldwide<br>Collection of Eggplant Germplasm. PLoS ONE, 2014, 9, e95930.                                                           | 1.1 | 37        |

| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | First Report of Fusarium Rot of Garlic Bulbs Caused by <i>Fusarium proliferatum</i> in North<br>Carolina. Plant Disease, 2014, 98, 1009-1009.                                                                       | 0.7 | 6         |
| 56 | First Report of <i>Pseudoperonospora cubensis</i> Causing Downy Mildew on <i>Momordica balsamina</i> and <i>M. charantia</i> in North Carolina. Plant Disease, 2014, 98, 1279-1279.                                 | 0.7 | 18        |
| 57 | First Report of Cladosporium Leaf Spot of Spinach Caused by <i>Cladosporium variabile</i> in North<br>Carolina. Plant Disease, 2014, 98, 1741-1741.                                                                 | 0.7 | 1         |
| 58 | Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, 2013, 6, 4.                                                                                  | 1.7 | 1,777     |
| 59 | Phytophthora capsici in the eastern USA , 2013, , 96-103.                                                                                                                                                           |     | 1         |
| 60 | Genetic Structure of <i>Clavibacter michiganensis</i> subsp. <i>michiganensis</i> Populations in<br>Michigan Commercial Tomato Fields. Plant Disease, 2012, 96, 788-796.                                            | 0.7 | 18        |
| 61 | Advances in Research on <i>Phytophthora capsici</i> on Vegetable Crops in The United States. Plant<br>Disease, 2012, 96, 1588-1600.                                                                                 | 0.7 | 143       |
| 62 | The Genetic Structure of <i>Pseudoperonospora cubensis</i> Populations. Plant Disease, 2012, 96, 1459-1470.                                                                                                         | 0.7 | 58        |
| 63 | Differences in virulence of Phytophthora capsici isolates from a worldwide collection on host<br>fruits. European Journal of Plant Pathology, 2012, 132, 281-296.                                                   | 0.8 | 34        |
| 64 | Investigating the Genetic Structure of <i>Phytophthora capsici</i> Populations. Phytopathology, 2011, 101, 1061-1073.                                                                                               | 1.1 | 56        |
| 65 | Variation in Phenotypic Characteristics of <i>Phytophthora capsici</i> Isolates from a Worldwide<br>Collection. Plant Disease, 2011, 95, 1080-1088.                                                                 | 0.7 | 27        |
| 66 | The cucurbit downy mildew pathogen <i>Pseudoperonospora cubensis</i> . Molecular Plant<br>Pathology, 2011, 12, 217-226.                                                                                             | 2.0 | 151       |
| 67 | Temporal Genetic Structure of <i>Phytophthora capsici</i> Populations from a Creek Used for<br>Irrigation in Michigan. Plant Disease, 2011, 95, 1358-1369.                                                          | 0.7 | 21        |
| 68 | Resistance in Tomato and Wild Relatives to Crown and Root Rot Caused by <i>Phytophthora capsici</i> . Phytopathology, 2010, 100, 619-627.                                                                           | 1.1 | 58        |
| 69 | Characterization of Phytophthora infestans Populations in Colombia: First Report of the A2 Mating<br>Type. Phytopathology, 2009, 99, 82-88.                                                                         | 1.1 | 56        |
| 70 | Distinct Amino Acids of the <i>Phytophthora infestans</i> Effector AVR3a Condition Activation of R3a<br>Hypersensitivity and Suppression of Cell Death. Molecular Plant-Microbe Interactions, 2009, 22,<br>269-281. | 1.4 | 65        |
| 71 | Susceptibility of Fraser Fir to <i>Phytophthora capsici</i> . Plant Disease, 2009, 93, 135-141.                                                                                                                     | 0.7 | 51        |
| 72 | Evidence for Positive Selection in Putative Virulence Factors within the Paracoccidioides brasiliensis<br>Species Complex. PLoS Neglected Tropical Diseases, 2008, 2, e296.                                         | 1.3 | 45        |

| #  | Article                                                                                                                                                                                | IF       | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 73 | Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in <i>Manihot esculenta</i> . Genome, 2007, 50, 1078-1088.                                                | 0.9      | 40           |
| 74 | Survey and analysis of microsatellites from transcript sequences in Phytophthora species: frequency, distribution, and potential as markers for the genus. BMC Genomics, 2006, 7, 245. | 1.2      | 43           |
| 75 | Microsatellite Analysis of Three Phylogenetic Species of Paracoccidioides brasiliensis. Journal of<br>Clinical Microbiology, 2006, 44, 2153-2157.                                      | 1.8      | 80           |
| 76 | First Report of Downy Mildew Caused by Peronospora chenopodii-ambrosioidis on Epazote (Dysphania) Tj ETQq(                                                                             | 0.0 rgBT | /Oyerlock 10 |

| <sup>77</sup> PHP-02-21-0027 0.8 11 |
|-------------------------------------|
|-------------------------------------|