Rhoda K Stefanatos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6736955/publications.pdf

Version: 2024-02-01

		758635	996533
15	1,190	12	15
papers	citations	h-index	g-index
15	15	15	1858
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	The role of mitochondrial <scp>ROS</scp> in the aging brain. FEBS Letters, 2018, 592, 743-758.	1.3	259
2	Oncogenic Ras Diverts a Host TNF Tumor Suppressor Activity into Tumor Promoter. Developmental Cell, 2010, 18, 999-1011.	3.1	206
3	Inducible progenitor-derived Wingless regulates adult midgut regeneration in <i>Drosophila</i> EMBO Journal, 2012, 31, 3901-3917.	3.5	134
4	Expression of the yeast NADH dehydrogenase Ndi1 in <i>Drosophila</i> confers increased lifespan independently of dietary restriction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9105-9110.	3.3	132
5	Transformed Epithelia Trigger Non-Tissue-Autonomous Tumor Suppressor Response by Adipocytes via Activation of Toll and Eiger/TNF Signaling. Cell Reports, 2014, 6, 855-867.	2.9	96
6	Non-autonomous crosstalk between the Jak/Stat and Egfr pathways mediates <i>Apc1</i> driven intestinal stem cell hyperplasia in the <i>Drosophila</i> adult midgut. Development (Cambridge), 2012, 139, 4524-4535.	1.2	95
7	Mitochondrial complex I: A central regulator of the aging process. Cell Cycle, 2011, 10, 1528-1532.	1.3	70
8	Regulation of Lifespan by the Mitochondrial Electron Transport Chain: Reactive Oxygen Species-Dependent and Reactive Oxygen Species-Independent Mechanisms. Antioxidants and Redox Signaling, 2013, 19, 1953-1969.	2.5	59
9	Production of reactive oxygen species by the mitochondrial electron transport chain in Drosophila melanogaster. Journal of Bioenergetics and Biomembranes, 2010, 42, 135-142.	1.0	34
10	Practical Recommendations for the Use of the GeneSwitch Gal4 System to Knock-Down Genes in Drosophila melanogaster. PLoS ONE, 2016, 11, e0161817.	1.1	29
11	Reduced LIMK2 expression in colorectal cancer reflects its role in limiting stem cell proliferation. Gut, 2014, 63, 480-493.	6.1	26
12	dj- $1\hat{l}^2$ regulates oxidative stress, insulin-like signaling and development in Drosophila melanogaster. Cell Cycle, 2012, 11, 3876-3886.	1.3	25
13	Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies. GeroScience, 2022, 44, 1961-1974.	2.1	10
14	Essential Physiological Differences Characterize Short- and Long-Lived Strains of Drosophila melanogaster. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1835-1843.	1.7	9
15	p120 Catenin Is Required for the Stress Response in Drosophila. PLoS ONE, 2013, 8, e83942.	1.1	6