Florence Pedeutour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6736880/publications.pdf

Version: 2024-02-01

73 papers 4,408 citations

147801 31 h-index 65 g-index

76 all docs

76 docs citations

times ranked

76

4243 citing authors

#	Article	IF	Citations
1	Deregulation of the platelet-derived growth factor \hat{l}^2 -chain gene via fusion with collagen gene COL1A1 in dermatof ibrosarcoma protuberans and giant-cell fibroblastoma. Nature Genetics, 1997, 15, 95-98.	21.4	510
2	Detection of MDM2-CDK4 Amplification by Fluorescence In Situ Hybridization in 200 Paraffin-embedded Tumor Samples: Utility in Diagnosing Adipocytic Lesions and Comparison With Immunohistochemistry and Real-time PCR. American Journal of Surgical Pathology, 2007, 31, 1476-1489.	3.7	331
3	Genetics of dermatofibrosarcoma protuberans family of tumors: From ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes and Cancer, 2003, 37, 1-19.	2.8	274
4	Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes and Cancer, 1999, 24, 30-41.	2.8	247
5	Well-differentiated and dedifferentiated liposarcomas. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2010, 456, 167-179.	2.8	206
6	<i>HMGA2</i> is the partner of <i>MDM2</i> in wellâ€differentiated and dedifferentiated liposarcomas whereas <i>CDK4</i> belongs to a distinct inconsistent amplicon. International Journal of Cancer, 2008, 122, 2233-2241.	5.1	179
7	Dermatofibrosarcoma Protuberans, Giant Cell Fibroblastoma, and Hybrid Lesions in Children: Clinicopathologic Comparative Analysis of 28 Cases With Molecular Data. American Journal of Surgical Pathology, 2003, 27, 27-39.	3.7	172
8	Complex composition and coâ€amplification of <i>SAS</i> and <i>MDM2</i> in ring and giant rod marker chromosomes in wellâ€differentiated liposarcoma. Genes Chromosomes and Cancer, 1994, 10, 85-94.	2.8	171
9	The Architecture and Evolution of Cancer Neochromosomes. Cancer Cell, 2014, 26, 653-667.	16.8	161
10	Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective, multicentre, observational study. Lancet Oncology, The, 2016, 17, 532-538.	10.7	134
11	Imatinib Mesylate as a Preoperative Therapy in Dermatofibrosarcoma: Results of a Multicenter Phase II Study on 25 Patients. Clinical Cancer Research, 2010, 16, 3288-3295.	7.0	128
12	Clinical and Biological Significance of <i>CDK4</i> Amplification in Well-Differentiated and Dedifferentiated Liposarcomas. Clinical Cancer Research, 2009, 15, 5696-5703.	7.0	124
13	Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A. International Journal of Cancer, 2007, 121, 199-205.	5.1	106
14	Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23 $\hat{a}^{1/4}$ p24 amplification including JAK2 and JMJD2C. Cancer Genetics and Cytogenetics, 2006, 167, 122-130.	1.0	93
15	A Clinical, Histologic, and Molecular Study of 9 Cases of Congenital Dermatofibrosarcoma Protuberans. Archives of Dermatology, 2007, 143, 203-10.	1.4	88
16	Characterization of centromere alterations in liposarcomas. Genes Chromosomes and Cancer, 2000, 29, 117-129.	2.8	73
17	Fluorescence in situ hybridization analysis is a helpful test for the diagnosis of dermatofibrosarcoma protuberans. Modern Pathology, 2015, 28, 230-237.	5 . 5	68
18	Comparative genomic hybridization as a tool to define two distinct chromosome 12â€derived amplification units in wellâ€differentiated liposarcomas. Genes Chromosomes and Cancer, 1994, 9, 292-295.	2.8	67

#	Article	IF	CITATIONS
19	Molecular cytogenetic characterization of proximalâ€type epithelioid sarcoma. Genes Chromosomes and Cancer, 2004, 41, 283-290.	2.8	67
20	Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Modern Pathology, 2015, 28, 1404-1414.	5.5	62
21	Alternative PDGFD rearrangements in dermatofibrosarcomas protuberans without PDGFB fusions. Modern Pathology, 2018, 31, 1683-1693.	5.5	56
22	11q13 Alterations in two cases of hibernoma: Large heterozygous deletions and rearrangement breakpoints near <i>GARP</i> in 11q13.5. Genes Chromosomes and Cancer, 2003, 37, 389-395.	2.8	49
23	Gains and complex rearrangements of the 12q13-15 chromosomal region in ordinary lipomas: The "missing link―between lipomas and liposarcomas?. International Journal of Cancer, 2007, 121, 308-315.	5.1	49
24	Peritoneal carcinomatosis of colorectal cancer: novel clinical and molecular outcomes. American Journal of Surgery, 2017, 213, 377-387.	1.8	47
25	Localization and expression of the human estrogen receptor beta gene in uterine leiomyomata. , 1998, 23, 361-366.		45
26	Molecular cytogenetics of pediatric adipocytic tumors. Cancer Genetics, 2015, 208, 469-481.	0.4	44
27	Dismantling papillary renal cell carcinoma classification: The heterogeneity of genetic profiles suggests several independent diseases. Genes Chromosomes and Cancer, 2015, 54, 369-382.	2.8	41
28	Ectopic sequences from truncatedHMGIC in liposarcomas are derived from various amplified chromosomal regions. Genes Chromosomes and Cancer, 2001, 31, 264-273.	2.8	37
29	<i>NFIB</i> rearrangement in superficial, retroperitoneal, and colonic lipomas with aberrations involving chromosome band 9p22. Genes Chromosomes and Cancer, 2008, 47, 971-977.	2.8	37
30	Identification of New Translocation Breakpoints at 12q13 in Lipomas. Genomics, 1997, 46, 70-77.	2.9	35
31	Primary Epithelioid Sarcoma of Bone. American Journal of Surgical Pathology, 2009, 33, 954-958.	3.7	35
32	Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2008, 452, 689-696.	2.8	33
33	No Correlation between the Molecular Subtype of COL1A1–PDGFB Fusion Gene and the Clinico-Histopathological Features of Dermatofibrosarcoma Protuberans. Journal of Investigative Dermatology, 2010, 130, 904-907.	0.7	33
34	Association of Oncogenic Mutations in Patients With Advanced Cutaneous Squamous Cell Carcinomas Treated With Cetuximab. JAMA Dermatology, 2017, 153, 291.	4.1	29
35	HMGA2–NFIB fusion in a pediatric intramuscular lipoma: a novel case of NFIB alteration in a large deep-seated adipocytic tumor. Cancer Genetics and Cytogenetics, 2009, 195, 66-70.	1.0	28
36	Selective elimination of amplified <i>CDK4</i> sequences correlates with spontaneous adipocytic differentiation in liposarcoma. Genes Chromosomes and Cancer, 2009, 48, 943-952.	2.8	28

#	Article	IF	CITATIONS
37	Monosomy 7 and absence of 12q amplification in two cases of spindle cell liposarcomas. Cancer Genetics and Cytogenetics, 2008, 184, 99-104.	1.0	27
38	A well-differentiated liposarcoma with a new type of chromosome 12-derived markers. Cancer Genetics and Cytogenetics, 2001, 131, 13-18.	1.0	26
39	Rearrangement involving chromosomes 1 and 8 in a retroperitoneal lipoma. Cancer Genetics and Cytogenetics, 2002, 133, 156-159.	1.0	26
40	Value of Cytogenetic Analysis in the Treatment of Dermatofibrosarcoma Protuberans. Journal of Clinical Oncology, 2008, 26, 1757-1759.	1.6	25
41	Identification of <i>PPAP2B</i> as a novel recurrent translocation partner gene of <i>HMGA2</i> in lipomas. Genes Chromosomes and Cancer, 2013, 52, 580-590.	2.8	24
42	Syndecan-1 regulates adipogenesis: new insights in dedifferentiated liposarcoma tumorigenesis. Carcinogenesis, 2015, 36, 32-40.	2.8	24
43	Three Rounds of External Quality Assessment in France to Evaluate the Performance of 28 Platforms for Multiparametric Molecular Testing in Metastatic Colorectal and Non-Small Cell Lung Cancer. Journal of Molecular Diagnostics, 2016, 18, 205-214.	2.8	23
44	Comprehensive study of three novel cases of <i>TFEB</i> à€emplified renal cell carcinoma and review of the literature: Evidence for a specific entity with poor outcome. Genes Chromosomes and Cancer, 2018, 57, 99-113.	2.8	23
45	Variability of origin for the neocentromeric sequences in analphoid supernumerary marker chromosomes of well-differentiated liposarcomas. Cancer Letters, 2009, 273, 323-330.	7.2	21
46	<i>Letâ€₹</i> MicroRNA and <i>HMGA2</i> levels of expression are not inversely linked in adipocytic tumors: Analysis of 56 lipomas and liposarcomas with molecular cytogenetic data. Genes Chromosomes and Cancer, 2011, 50, 442-455.	2.8	20
47	ALK-TPM3 rearrangement in adult renal cell carcinoma: Report of a new case showing loss of chromosome 3 and literature review. Cancer Genetics, 2018, 221, 31-37.	0.4	20
48	The Relevance of Testing the Efficacy of Anti-Angiogenesis Treatments on Cells Derived from Primary Tumors: A New Method for the Personalized Treatment of Renal Cell Carcinoma. PLoS ONE, 2014, 9, e89449.	2.5	20
49	Diagnosis of primary esophageal synovial sarcoma by demonstration of t(X;18) translocation: a case report. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2006, 449, 262-267.	2.8	19
50	Oncocytic lipoadenoma of the parotid gland: Immunohistochemical and cytogenetic analysis. Pathology Research and Practice, 2010, 206, 66-72.	2.3	19
51	Rearrangement of <i>HMGA2</i> in a case of infantile lipoblastoma without Plag1 alteration. Pediatric Blood and Cancer, 2012, 58, 798-800.	1.5	19
52	Microsatellite instability associated with durable complete response to PD-L1 inhibitor in head and neck squamous cell carcinoma. Oral Oncology, 2018, 80, 104-107.	1,5	19
53	<scp>SRC</scp> inhibition represents a potential therapeutic strategy in liposarcoma. International Journal of Cancer, 2015, 137, 2578-2588.	5.1	18
54	Ovarian dysgerminoma and Apert syndrome. Pediatric Blood and Cancer, 2008, 50, 696-698.	1.5	16

#	Article	IF	CITATIONS
55	Spatio-temporal genetic heterogeneity of CTNNB1 mutations in sporadic desmoid type fibromatosis lesions. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 468, 369-374.	2.8	13
56	Other Targetable Sarcomas. Seminars in Oncology, 2009, 36, 358-371.	2.2	12
57	A renal metanephric adenoma showing both a 2p16–24 deletion and BRAF V600E mutation: a synergistic role for a tumor suppressor gene on chromosome 2p and BRAF activation?. Cancer Genetics, 2013, 206, 347-352.	0.4	12
58	Soft tissue angiomatosis: another PIK3CA â€related disorder. Histopathology, 2020, 76, 540-549.	2.9	12
59	A newly characterized human well-differentiated liposarcoma cell line contains amplifications of the 12q12-21 and 10p11-14 regions. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2012, 461, 67-78.	2.8	11
60	Comprehensive study of nine novel cases of <scp><i>TFEB</i></scp> â€amplified renal cell carcinoma: an aggressive tumour with frequent <scp>PDL1</scp> expression. Histopathology, 2022, 81, 228-238.	2.9	10
61	HR23b expression is a potential predictive biomarker for HDAC inhibitor treatment in mesenchymal tumours and is associated with response to vorinostat. Journal of Pathology: Clinical Research, 2016, 2, 59-71.	3.0	9
62	A Multicenter Phase II Study of Pazopanib in Patients with Unresectable Dermatofibrosarcoma Protuberans. Journal of Investigative Dermatology, 2021, 141, 761-769.e2.	0.7	7
63	Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2016, 469, 459-464.	2.8	5
64	MDM2 amplification and fusion gene ss18-ssx in a poorly differentiated synovial sarcoma: A rare but puzzling conjunction. Neoplasia, 2020, 22, 311-321.	5.3	5
65	<i>RBM10â€TFE3</i> fusions: A FISHâ€concealed anomaly in adult renal cell carcinomas displaying a variety of morphological and genomic features: Comprehensive study of six novel cases. Genes Chromosomes and Cancer, 2021, 60, 772-784.	2.8	5
66	Double minute chromosomes harboring <i>MDM2</i> amplification in a pediatric atypical lipomatous tumor. Genes Chromosomes and Cancer, 2019, 58, 673-679.	2.8	4
67	Molecular follow-up of first-line treatment by osimertinib in lung cancer: Importance of using appropriate tools for detecting EGFR resistance mutation C797S. Cancer Genetics, 2021, 256-257, 158-161.	0.4	4
68	A multicenter phase II study of pazopanib in patients with unresectable or recurrent dermatofibrosarcoma protuberans (DFSP) Journal of Clinical Oncology, 2018, 36, 11557-11557.	1.6	4
69	Clinicopathologic and molecular analyses of cutaneous leiomyosarcoma: A retrospective, multicenter study of 79 cases. Journal of the American Academy of Dermatology, 2023, 88, 215-216.	1.2	4
70	Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes and Cancer, 1999, 24, 30-41.	2.8	3
71	First description of inhibition of <i>letâ€₹</i> microRNA expression and <i>HMGA2</i> overexpression in a case of deepâ€seated diffuse lipomatosis. Histopathology, 2012, 61, 519-522.	2.9	1
72	Detection of tetraploidization in chromophobe renal cell carcinoma: Insights and pitfalls. Genes Chromosomes and Cancer, 2020, 59, 675-687.	2.8	1

#	Article	IF	CITATIONS
73	Apport de la cytogénétique et de l'hybridation in situ en fluorescence (FISH) dans le diagnostic des tumeurs mésenchymateuses. Revue Francophone Des Laboratoires, 2010, 2010, 29-42.	0.0	O