Seraphine Wegner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6736647/publications.pdf

Version: 2024-02-01

58 papers

2,505 citations

218592 26 h-index 206029 48 g-index

62 all docs

62 docs citations

62 times ranked 3424 citing authors

#	Article	IF	CITATIONS
1	Towards applications of synthetic cells in nanotechnology. Current Opinion in Chemical Biology, 2022, 68, 102145.	2.8	3
2	Generation and Characterization of a Polyclonal Human Reference Antibody to Measure Anti-Drug Antibody Titers in Patients with Fabry Disease. International Journal of Molecular Sciences, 2021, 22, 2680.	1.8	3
3	The rise of intelligent matter. Nature, 2021, 594, 345-355.	13.7	228
4	Cell to Cell Signaling through Light in Artificial Cell Communities: Glowing Predator Lures Prey. ACS Nano, 2021, 15, 9434-9444.	7. 3	44
5	Spatiotemporal Control Over Multicellular Migration Using Green Light Reversible Cell–Cell Interactions. Advanced Biology, 2021, 5, e2000199.	1.4	7
6	Red/Farâ€Red Light Switchable Cargo Attachment and Release in Bacteriaâ€Driven Microswimmers. Advanced Healthcare Materials, 2020, 9, e1900956.	3.9	30
7	The Importance of Cell–Cell Interaction Dynamics in Bottom-Up Tissue Engineering: Concepts of Colloidal Self-Assembly in the Fabrication of Multicellular Architectures. Nano Letters, 2020, 20, 2257-2263.	4.5	30
8	Multistimuli Sensing Adhesion Unit for the Selfâ€Positioning of Minimal Synthetic Cells. Small, 2020, 16, 2002440.	5.2	5
9	Precise tetrafunctional streptavidin bioconjugates towards multifaceted drug delivery systems. Chemical Communications, 2020, 56, 9858-9861.	2.2	5
10	Blue-Light-Switchable Bacterial Cell–Cell Adhesions Enable the Control of Multicellular Bacterial Communities. ACS Synthetic Biology, 2020, 9, 1169-1180.	1.9	32
11	Bioluminescence-Triggered Photoswitchable Bacterial Adhesions Enable Higher Sensitivity and Dual-Readout Bacterial Biosensors for Mercury. ACS Sensors, 2020, 5, 2205-2210.	4.0	21
12	Orthogonal Blue and Red Light Controlled Cell–Cell Adhesions Enable Sorting-out in Multicellular Structures. ACS Synthetic Biology, 2020, 9, 2076-2086.	1.9	15
13	Controlled division of cell-sized vesicles by low densities of membrane-bound proteins. Nature Communications, 2020, 11, 905.	5.8	143
14	Turning Cell Adhesions ON or OFF with High Spatiotemporal Precision Using the Green Light Responsive Protein CarH. Chemistry - A European Journal, 2020, 26, 9859-9863.	1.7	14
15	Multifunctional streptavidin–biotin conjugates with precise stoichiometries. Chemical Science, 2020, 11, 4422-4429.	3.7	12
16	Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells. Chemical Communications, 2019, 55, 9448-9451.	2.2	31
17	Special Issue on Bottomâ€Up Synthetic Biology. ChemBioChem, 2019, 20, 2533-2534.	1.3	13
18	Responsive Ionogel Surface with Renewable Antibiofouling Properties. Macromolecular Rapid Communications, 2019, 40, e1900395.	2.0	13

#	Article	IF	CITATIONS
19	Blue Light Switchable Cell–Cell Interactions Provide Reversible and Spatiotemporal Control Towards Bottomâ€Up Tissue Engineering. Advanced Biology, 2019, 3, e1800310.	3.0	21
20	Cobalt-Cross-Linked, Redox-Responsive Spy Network Protein Hydrogels. ACS Macro Letters, 2019, 8, 773-778.	2.3	20
21	Independent Blue and Red Light Triggered Narcissistic Selfâ€6orting Selfâ€Assembly of Colloidal Particles. Small, 2019, 15, e1901801.	5.2	18
22	Green light lithography: a general strategy to create active protein and cell micropatterns. Materials Horizons, 2019, 6, 1222-1229.	6.4	15
23	Photoâ€ECM: A Blue Light Photoswitchable Synthetic Extracellular Matrix Protein for Reversible Control over Cell–Matrix Adhesion. Advanced Biology, 2019, 3, 1800302.	3.0	9
24	Mimicking Adhesion in Minimal Synthetic Cells. Advanced Biology, 2019, 3, e1800333.	3.0	17
25	Bacterial Photolithography: Patterning <i>Escherichia coli</i> Biofilms with High Spatial Control Using Photocleavable Adhesion Molecules. Advanced Biology, 2019, 3, e1800269.	3.0	11
26	Engineering Proteins at Interfaces: From Complementary Characterization to Material Surfaces with Designed Functions. Angewandte Chemie - International Edition, 2018, 57, 12626-12648.	7.2	40
27	Engineering von Proteinen an OberflÄ g hen: Von komplementÄ g er Charakterisierung zu MaterialoberflÄ g hen mit maÄŸgeschneiderten Funktionen. Angewandte Chemie, 2018, 130, 12806-12830.	1.6	3
28	Dynamic blue light-switchable protein patterns on giant unilamellar vesicles. Chemical Communications, 2018, 54, 948-951.	2.2	27
29	The spatial molecular pattern of integrin recognition sites and their immobilization to colloidal nanobeads determine $\hat{l}\pm2\hat{l}^21$ integrin-dependent platelet activation. Biomaterials, 2018, 167, 107-120.	5.7	12
30	Plasmonic Nanosensors Reveal a Height Dependence of MinDE Protein Oscillations on Membrane Features. Journal of the American Chemical Society, 2018, 140, 17901-17906.	6.6	26
31	Conformational Dynamics of a Single Protein Monitored for 24 h at Video Rate. Nano Letters, 2018, 18, 6633-6637.	4.5	53
32	Light-Guided Motility of a Minimal Synthetic Cell. Nano Letters, 2018, 18, 7268-7274.	4.5	47
33	MaxSynBio: Wege zur Synthese einer Zelle aus nicht lebenden Komponenten. Angewandte Chemie, 2018, 130, 13566-13577.	1.6	27
34	Independent Control over Multiple Cell Types in Space and Time Using Orthogonal Blue and Red Light Switchable Cell Interactions. Advanced Science, 2018, 5, 1800446.	5.6	21
35	Reversible Social Self-Sorting of Colloidal Cell-Mimics with Blue Light Switchable Proteins. ACS Synthetic Biology, 2018, 7, 1817-1824.	1.9	18
36	MaxSynBio: Avenues Towards Creating Cells from the Bottom Up. Angewandte Chemie - International Edition, 2018, 57, 13382-13392.	7.2	234

#	Article	IF	CITATIONS
37	Implementation of Blue Light Switchable Bacterial Adhesion for Design of Biofilms. Bio-protocol, 2018, 8, e2893.	0.2	1
38	Enhanced Biological Activity of BMPâ€2 Bound to Surfaceâ€Grafted Heparan Sulfate. Advanced Biology, 2017, 1, e1600041.	3.0	24
39	Blue Light Switchable Bacterial Adhesion as a Key Step toward the Design of Biofilms. ACS Synthetic Biology, 2017, 6, 2170-2174.	1.9	45
40	Photocleavable linker for the patterning of bioactive molecules. Scientific Reports, 2016, 5, 18309.	1.6	44
41	Cobalt Cross-Linked Redox-Responsive PEG Hydrogels: From Viscoelastic Liquids to Elastic Solids. Macromolecules, 2016, 49, 4229-4235.	2.2	63
42	Cobalt(III)â€Mediated Permanent and Stable Immobilization of Histidineâ€Tagged Proteins on NTAâ€Functionalized Surfaces. Chemistry - A European Journal, 2016, 22, 3156-3162.	1.7	39
43	A Genetically Encoded FRET Sensor for Intracellular Heme. ACS Chemical Biology, 2015, 10, 1610-1615.	1.6	65
44	Synthesis of Pyridine Acrylates and Acrylamides and Their Corresponding Pyridinium Ions as Versatile Cross-Linkers for Tunable Hydrogels. Synthesis, 2014, 46, 1243-1253.	1.2	8
45	Dual-Functionalized Nanostructured Biointerfaces by Click Chemistry. Langmuir, 2014, 30, 6897-6905.	1.6	36
46	Molecular mechanism and structure of the <i>Saccharomyces cerevisiae</i> Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4043-4048.	3.3	109
47	Toward Controlling the Formation, Degradation Behavior, and Properties of Hydrogels Synthesized by Azaâ€Michael Reactions. Macromolecular Chemistry and Physics, 2013, 214, 1865-1873.	1.1	18
48	The effect of molar mass and degree of hydroxyethylation on the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes. Biomaterials, 2013, 34, 2530-2538.	5.7	68
49	Advances in Experimental Cell Biology and Cell-Material Interactions. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2013, , 87-105.	0.3	0
50	Genetically Encoded Copper(I) Reporters with Improved Response for Use in Imaging. Journal of the American Chemical Society, 2013, 135, 3144-3149.	6.6	42
51	Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels. Scientific Reports, 2013, 3, 2043.	1.6	13
52	Cobalt(III) as a Stable and Inert Mediator Ion between NTA and His6â€√agged Proteins. Angewandte Chemie - International Edition, 2013, 52, 7593-7596.	7.2	90
53	The tightly regulated copper window in yeast. Chemical Communications, 2011, 47, 2571-2573.	2.2	70
54	Selective Recognition of Americium by Peptide-Based Reagents. Inorganic Chemistry, 2011, 50, 7937-7939.	1.9	19

#	Article	IF	CITATIONS
55	Metal-binding properties of Hpn from Helicobacter pylori and implications for the therapeutic activity of bismuth. Chemical Science, 2011, 2, 451-456.	3.7	13
56	Dynamic Copper(I) Imaging in Mammalian Cells with a Genetically Encoded Fluorescent Copper(I) Sensor. Journal of the American Chemical Society, 2010, 132, 2567-2569.	6.6	123
57	Engineering A Uranylâ€Specific Binding Protein from NikR. Angewandte Chemie - International Edition, 2009, 48, 2339-2341.	7.2	76
58	Design of an Emission Ratiometric Biosensor from MerR Family Proteins:Â A Sensitive and Selective Sensor for Hg2+. Journal of the American Chemical Society, 2007, 129, 3474-3475.	6.6	263