
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6736425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Industrially relevant CHA membranes for CO2/CH4 separation. Journal of Membrane Science, 2022, 641, 119888.	8.2	42
2	The origin of the surface barrier in nanoporous materials. Journal of Membrane Science, 2022, 641, 119893.	8.2	10
3	Recovery of helium from natural gas using MFI membranes. Journal of Membrane Science, 2022, 644, 120113.	8.2	6
4	Bacterial cellulose assisted synthesis of hierarchical pompon-like SAPO-34 for CO2 adsorption. Microporous and Mesoporous Materials, 2022, 331, 111664.	4.4	5
5	Mass transport of CO2 over CH4 controlled by the selective surface barrier in ultra-thin CHA membranes. Microporous and Mesoporous Materials, 2022, 332, 111716.	4.4	7
6	Ultra-thin zeolite CHA and FAU membranes for desalination by pervaporation. Separation and Purification Technology, 2022, 294, 121177.	7.9	5
7	Structural transformation of the nickel coordination-induced subnanoporosity of aminosilica membranes for methanol-selective, high-flux pervaporation. Journal of Membrane Science, 2022, 656, 120613.	8.2	10
8	Zeolite membrane process for industrial CO2/CH4 separation. Chemical Engineering Journal, 2022, 446, 137223.	12.7	14
9	Removal of dyes from aqueous solution using novel C@C composite adsorbents. Microporous and Mesoporous Materials, 2021, 313, 110840.	4.4	15
10	Microporous Nickel-Coordinated Aminosilica Membranes for Improved Pervaporation Performance of Methanol/Toluene Separation. ACS Applied Materials & Interfaces, 2021, 13, 23247-23259.	8.0	23
11	C@TiO2 core-shell adsorbents for efficient rhodamine B adsorption from aqueous solution. Microporous and Mesoporous Materials, 2021, 320, 111110.	4.4	7
12	Pore Structure Controllability and CO2 Permeation Properties of Silica-Derived Membranes with a Dual-Network Structure. Industrial & Engineering Chemistry Research, 2021, 60, 8527-8537.	3.7	3
13	Monolithic carbon aerogels from bioresources and their application for CO2 adsorption. Microporous and Mesoporous Materials, 2021, 323, 111236.	4.4	10
14	Efficient synthesis of polyether polyols in simple microreactors. Reaction Chemistry and Engineering, 2021, 6, 685-693.	3.7	2
15	Metal-induced microporous aminosilica creates a highly permeable gas-separation membrane. Materials Chemistry Frontiers, 2021, 5, 3029-3042.	5.9	16
16	Phase inversion/sintering-induced porous ceramic microsheet membranes for high-quality separation of oily wastewater. Journal of Membrane Science, 2020, 595, 117477.	8.2	59
17	Fineâ€ŧuned, molecularâ€composite, organosilica membranes for highly efficient propylene/propane separation via suitable pore size. AICHE Journal, 2020, 66, e16850.	3.6	14
18	Preparation of Silica@Silica Core–Shell Microspheres Using an Aqueous Two-Phase System in a Novel Microchannel Device. Langmuir, 2020, 36, 576-584.	3.5	6

#	Article	IF	CITATIONS
19	Energy-efficient separation of organic liquids using organosilica membranes via a reverse osmosis route. Journal of Membrane Science, 2020, 597, 117758.	8.2	46
20	Development of high-performance sub-nanoporous SiC-based membranes derived from polytitanocarbosilane. Journal of Membrane Science, 2020, 598, 117688.	8.2	24
21	High performance fluoride MFI membranes for efficient CO2/H2 separation. Journal of Membrane Science, 2020, 616, 118623.	8.2	15
22	A carbon–silica–zirconia ceramic membrane with CO ₂ flow-switching behaviour promising versatile high-temperature H ₂ /CO ₂ separation. Journal of Materials Chemistry A, 2020, 8, 23563-23573.	10.3	15
23	Pervaporation removal of methanol from methanol/organic azeotropes using organosilica membranes: Experimental and modeling. Journal of Membrane Science, 2020, 610, 118284.	8.2	43
24	Tuning the microstructure of polycarbosilane-derived SiC(O) separation membranes via thermal-oxidative cross-linking. Separation and Purification Technology, 2020, 248, 117067.	7.9	15
25	Amino-decorated organosilica membranes for highly permeable CO2 capture. Journal of Membrane Science, 2020, 611, 118328.	8.2	24
26	Highâ€performance molecularâ€separation ceramic membranes derived from oxidative crossâ€linked polytitanocarbosilane. Journal of the American Ceramic Society, 2020, 103, 4473-4488.	3.8	19
27	Pore subnano-environment engineering of organosilica membranes for highly selective propylene/propane separation. Journal of Membrane Science, 2020, 603, 117999.	8.2	15
28	Microstructure evolution and enhanced permeation of SiC membranes derived from allylhydridopolycarbosilane. Journal of Membrane Science, 2020, 612, 118392.	8.2	18
29	Preparation of low carbon impact lignin nanoparticles with controllable size by using different strategies for particles recovery. Industrial Crops and Products, 2020, 147, 112243.	5.2	35
30	Highly permeable and selective tubular zeolite CHA membranes. Journal of Membrane Science, 2019, 588, 117224.	8.2	52
31	Tailoring Ultramicroporosity To Maximize CO ₂ Transport within Pyrimidine-Bridged Organosilica Membranes. ACS Applied Materials & Interfaces, 2019, 11, 7164-7173.	8.0	28
32	Preparation of carbon/cobalt composite from phenolic resin and ZIF-67 for efficient tannic acid adsorption. Microporous and Mesoporous Materials, 2019, 287, 9-17.	4.4	21
33	Tailoring the microstructure and permeation properties of bridged organosilica membranes via control of the bond angles. Journal of Membrane Science, 2019, 584, 56-65.	8.2	35
34	Ultra-thin MFI membranes with different Si/Al ratios for CO2/CH4 separation. Microporous and Mesoporous Materials, 2019, 284, 258-264.	4.4	33
35	A novel method for fabrication of high-flux zeolite membranes on supports with arbitrary geometry. Journal of Materials Chemistry A, 2019, 7, 10325-10330.	10.3	25
36	Binderless zeolite NaX microspheres with enhanced CO2 adsorption selectivity. Microporous and Mesoporous Materials, 2019, 278, 267-274.	4.4	28

#	Article	IF	CITATIONS
37	Enhanced CO 2 separation performance for tertiary amineâ€silica membranes via thermally induced local liberation of CH 3 Cl. AICHE Journal, 2018, 64, 1528-1539.	3.6	22
38	Two-Phase Diffusion Technique for the Preparation of Ultramacroporous/Mesoporous Silica Microspheres via Interface Hydrolysis, Diffusion, and Gelation of TEOS. Langmuir, 2018, 34, 2046-2056.	3.5	4
39	Highly permeable CHA membranes prepared by fluoride synthesis for efficient CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2018, 6, 6847-6853.	10.3	75
40	Ultra-thin MFI membranes for removal of C3+ hydrocarbons from methane. Journal of Membrane Science, 2018, 551, 254-260.	8.2	30
41	Preparation of hollow zeolite NaA/chitosan composite microspheres via in situ hydrolysis-gelation-hydrothermal synthesis of TEOS. Microporous and Mesoporous Materials, 2018, 257, 262-271.	4.4	15
42	Fabrication of PAA–PETPTA Janus Microspheres with Respiratory Function for Controlled Release of Guests with Different Sizes. Langmuir, 2018, 34, 7106-7116.	3.5	12
43	Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review. Applied Sciences (Switzerland), 2018, 8, 1032.	2.5	46
44	Pyrimidine-bridged organoalkoxysilane membrane for high-efficiency CO 2 transport via mild affinity. Separation and Purification Technology, 2017, 178, 232-241.	7.9	34
45	Fabrication and Microstructure Tuning of a Pyrimidine-Bridged Organoalkoxysilane Membrane for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2017, 56, 1316-1326.	3.7	24
46	Preparation of size-controllable monodispersed carbon@silica core-shell microspheres and hollow silica microspheres. Microporous and Mesoporous Materials, 2017, 247, 75-85.	4.4	9
47	Fabrication and CO2 permeation properties of amine-silica membranes using a variety of amine types. Journal of Membrane Science, 2017, 541, 447-456.	8.2	36
48	In situ impregnationâ^'gelationâ^'hydrothermal crystallization synthesis of hollow fiber zeolite NaA membrane. Microporous and Mesoporous Materials, 2017, 244, 278-283.	4.4	10
49	Improved Salts Transportation of a Positively Charged Loose Nanofiltration Membrane by Introduction of Poly(ionic liquid) Functionalized Hydrotalcite Nanosheets. ACS Sustainable Chemistry and Engineering, 2016, 4, 3292-3304.	6.7	72
50	A universal biological-materials-assisted hydrothermal route to prepare various inorganic hollow microcapsules in the presence of pollens. Powder Technology, 2016, 301, 26-33.	4.2	11
51	Recent advances in halloysite nanotube derived composites for water treatment. Environmental Science: Nano, 2016, 3, 28-44.	4.3	132
52	High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres. Journal of Hazardous Materials, 2015, 287, 373-383.	12.4	138
53	Development of a molecular separation membrane for efficient separation of low-molecular-weight organics and salts. Desalination, 2015, 359, 176-185.	8.2	56
54	A simple method for blocking defects in zeolite membranes. Journal of Membrane Science, 2015, 489, 270-274.	8.2	25

#	Article	IF	CITATIONS
55	Very high flux MFI membranes for alcohol recovery via pervaporation at high temperature and pressure. Separation and Purification Technology, 2015, 153, 138-145.	7.9	26
56	Fabrication and characterization of positively charged hybrid ultrafiltration and nanofiltration membranes via the in-situ exfoliation of Mg/Al hydrotalcite. Desalination, 2014, 335, 78-86.	8.2	45
57	Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP. Journal of Membrane Science, 2014, 465, 91-99.	8.2	140
58	Enhanced Antibacterial Activity of Silver Nanoparticles/Halloysite Nanotubes/Graphene Nanocomposites with Sandwich-Like Structure. Scientific Reports, 2014, 4, 4551.	3.3	113
59	Synthesis of binderless zeolite X microspheres and their CO2 adsorption properties. Separation and Purification Technology, 2013, 118, 188-195.	7.9	48
60	Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. Journal of Membrane Science, 2013, 447, 452-462.	8.2	387
61	Preparation of poly(sodium acrylate-acrylamide) superabsorbent nanocomposites incorporating graphene oxide and halloysite nanotubes. RSC Advances, 2013, 3, 13756.	3.6	32
62	Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities. Materials Science and Engineering C, 2013, 33, 3652-3660.	7.3	55
63	A two-phase segmented microfluidic technique for one-step continuous versatile preparation of zeolites. Chemical Engineering Journal, 2013, 219, 78-85.	12.7	33
64	Synthesis of Monodisperse Zeolite A/Chitosan Hybrid Microspheres and Binderless Zeolite A Microspheres. Industrial & Engineering Chemistry Research, 2012, 51, 2299-2308.	3.7	34
65	Influence of glycerol cosolvent on the synthesis of size controllable zeolite A. Materials Letters, 2011, 65, 2304-2306.	2.6	18