
Sheng-Run Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6736169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amorphous metal–organic frameworks obtained from a crystalline precursor for the capture of iodine with high capacities. Chemical Communications, 2022, 58, 5013-5016.	2.2	22
2	Fabrication of cellulose derivative coated spherical covalent organic frameworks as chiral stationary phases for high-performance liquid chromatographic enantioseparation. Journal of Chromatography A, 2022, 1675, 463155.	1.8	11
3	Transformation of a Hydrazone-Linked Covalent Organic Framework into a Highly Stable Hydrazide-Linked One. ACS Applied Polymer Materials, 2022, 4, 4624-4631.	2.0	13
4	Covalent Crossâ€Linking of Metalâ€Organic Cages: Formation of an Amorphous Cationic Porous Extended Framework for the Uptake of Oxoâ€Anions from Water. ChemPlusChem, 2021, 86, 709-715.	1.3	8
5	A hydrolytically stable cage-based metal–organic framework containing two types of building blocks for the adsorption of iodine and dyes. Inorganic Chemistry Frontiers, 2021, 8, 1083-1092.	3.0	55
6	A new hydrazone-linked covalent organic framework for Fe(<scp>iii</scp>) detection by fluorescence and QCM technologies. CrystEngComm, 2021, 23, 3594-3601.	1.3	28
7	Covalent Crossâ€Linking of Metalâ€Organic Cages: Formation of an Amorphous Cationic Porous Extended Framework for the Uptake of Oxoâ€Anions from Water. ChemPlusChem, 2021, 86, 699-699.	1.3	1
8	A hydrolytically stable Zn(II) coordination polymer based on a new imidazolyl-pyrazolyl heterotopic ligand as a scavenger of MnO4â^' and a luminescent sensor for MnO4â^' and Cr2O72â^'. Inorganic Chemistry Communication, 2021, 130, 108720.	1.8	3
9	A hydrolytically stable hydrogen-bonded inorganic-organic network as a luminescence turn-on sensor for the detection of Bi3+ and Fe3+ cations in water. Polyhedron, 2021, 205, 115284.	1.0	9
10	A recyclable bipyridine-containing covalent organic framework-based QCM sensor for detection of Hg(II) ion in aqueous solution. Journal of Solid State Chemistry, 2021, 302, 122421.	1.4	19
11	Degradation pathways of penthiopyrad by Î^MnO ₂ mediated processes: a combined density functional theory and experimental study. Environmental Sciences: Processes and Impacts, 2021, 23, 1977-1985.	1.7	0
12	Facile and Site-Selective Synthesis of an Amine-Functionalized Covalent Organic Framework. ACS Macro Letters, 2021, 10, 1590-1596.	2.3	32
13	A new QCM signal enhancement strategy based on streptavidin@metal-organic framework complex for miRNA detection. Analytica Chimica Acta, 2020, 1095, 212-218.	2.6	13
14	The interaction of an amorphous metal–organic cage-based solid (aMOC) with miRNA/DNA and its application on a quartz crystal microbalance (QCM) sensor. Chemical Communications, 2020, 56, 591-594.	2.2	6
15	A new amplification strategy for a quartz crystal microbalance miRNA sensor based on selective interactions between a metal–organic framework and miRNA. New Journal of Chemistry, 2020, 44, 1684-1688.	1.4	4
16	A Mn(<scp>ii</scp>)–MOF with inherent missing metal-ion defects based on an imidazole-tetrazole tripodal ligand and its application in supercapacitors. Dalton Transactions, 2020, 49, 12150-12155.	1.6	11
17	Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 19054-19061.	4.0	40
18	Protein A-mesoporous silica composites for chromatographic purification of immunoglobulin G. New Journal of Chemistry, 2020, 44, 7884-7890.	1.4	4

#	Article	IF	CITATIONS
19	Cu-MOF derived Cu–C nanocomposites towards high performance electrochemical supercapacitors. RSC Advances, 2020, 10, 4621-4629.	1.7	17
20	Cationic Amorphous Metal–Organic Cage-Based Materials for the Removal of Oxo-Anions from Water. ACS Applied Nano Materials, 2019, 2, 5824-5832.	2.4	28
21	Homochiral Cu(I) Coordination Polymers Based on a Double-Stranded Helical Building Block from Achiral Ligands: Symmetry-Breaking Crystallization, Photophysical and Photocatalytic Properties. Inorganic Chemistry, 2019, 58, 14660-14666.	1.9	25
22	Assembly of two new heterometallic coordination polymers derived from 3-(1 <i>H</i> -benzimidazol-2-yl)propanoic acid. Inorganic and Nano-Metal Chemistry, 2019, 49, 297-305.	0.9	0
23	An Anionic Nanotubular Metal–Organic Framework for High-Capacity Dye Adsorption and Dye Degradation in Darkness. Inorganic Chemistry, 2019, 58, 13979-13987.	1.9	75
24	Hydrolytically Stable Nanotubular Cationic Metal–Organic Framework for Rapid and Efficient Removal of Toxic Oxo-Anions and Dyes from Water. Inorganic Chemistry, 2019, 58, 2899-2909.	1.9	106
25	A Benzimidazole-Containing Covalent Organic Framework-Based QCM Sensor for Exceptional Detection of CEES. Crystal Growth and Design, 2019, 19, 3543-3550.	1.4	26
26	Stable Hydrazone-Linked Covalent Organic Frameworks Containing O,N,O′-Chelating Sites for Fe(III) Detection in Water. ACS Applied Materials & Interfaces, 2019, 11, 12830-12837.	4.0	152
27	Fabrication of a hydrazoneâ€linked covalent organic frameworkâ€bound capillary column for gas chromatography separation. Separation Science Plus, 2019, 2, 120-128.	0.3	14
28	An unprecedented 2D covalent organic framework with an htb net topology. Chemical Communications, 2019, 55, 13454-13457.	2.2	26
29	The construction of amorphous metal-organic cage-based solid for rapid dye adsorption and time-dependent dye separation from water. Chemical Engineering Journal, 2019, 357, 129-139.	6.6	129
30	Assembly of a miRNAâ€modified QCM sensor for miRNA recognition through response patterns. Journal of Molecular Recognition, 2019, 32, e2772.	1.1	3
31	Assembly of a New 2D Heterometallic 3d–4f Coordination Polymer Bearing Planar Tetranuclear Square Building Blocks. Journal of Chemical Crystallography, 2019, 49, 21-28.	0.5	4
32	Construction of a New 3D Zn(II) MOF with a mog Topology From 2-(Hydroxymethyl)-1H-imidazole-4,5-dicarboxylate. Journal of Chemical Crystallography, 2018, 48, 47-53.	0.5	3
33	Construction of d ¹⁰ metal coordination polymers based on <i>in situ</i> formed 3,5-di(1 <i>H</i> -1,2,4-triazol-1-yl)benzoic acid from different precursors: influence of <i>in situ</i> hydrolysis reactions on assembly process. CrystEngComm, 2018, 20, 5531-5543.	1.3	6
34	Construction of coordination polymers based on a rigid tripodal nitrogen-containing heterotopic ligand that designed by mixed-donors strategy. Journal of Solid State Chemistry, 2018, 265, 64-71.	1.4	7
35	Regulation of the surface area and surface charge property of MOFs by multivariate strategy: Synthesis, characterization, selective dye adsorption and separation. Microporous and Mesoporous Materials, 2018, 272, 101-108.	2.2	112
36	2-Fold Interpenetrating Bifunctional Cd-Metal–Organic Frameworks: Highly Selective Adsorption for CO ₂ and Sensitive Luminescent Sensing of Nitro Aromatic 2,4,6-Trinitrophenol. ACS Applied Materials & Interfaces, 2017, 9, 4701-4708.	4.0	113

#	Article	IF	CITATIONS
37	A series of alkaline earth metal coordination polymers constructed from two newly designed imidazole-based dicarboxylate ligands containing pyridinylmethyl groups. CrystEngComm, 2017, 19, 3003-3016.	1.3	16
38	Construction of Four Coordination Polymers based on 2-[4-(Pyridine-4-yl)phenyl]-1 <i>H</i> -imidazole-4,5-dicarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 593-600.	0.6	8
39	Anion and pH-regulated assembly of three Cd(II) coordination polymers based on 3,5-di(1H-benzo[d]imidazol-1-yl)benzoate. Journal of Coordination Chemistry, 2017, 70, 135-144.	0.8	4
40	Construction of a hydrazone-linked chiral covalent organic framework–silica composite as the stationary phase for high performance liquid chromatography. Journal of Chromatography A, 2017, 1519, 100-109.	1.8	110
41	Lanthanide contraction effect on the crystal structures of 2D lanthanide coordination polymers based on 2-(trifluoromethyl)-1H-imidazole-4,5-dicarboxylic acid. Structural Chemistry, 2017, 28, 577-586.	1.0	9
42	Anion- and temperature-dependent assembly, crystal structures and luminescence properties of six new Cd(<scp>ii</scp>) coordination polymers based on 2,3,5,6-tetrakis(2-pyridyl)pyrazine. CrystEngComm, 2016, 18, 5164-5176.	1.3	24
43	Construction of six new luminescent Ln(<scp>iii</scp>)–Zn(<scp>ii</scp>) heterometallic coordination polymers based on heterometallic secondary building units. CrystEngComm, 2016, 18, 8672-8682.	1.3	16
44	Rationally Designed 2D Covalent Organic Framework with a Brick-Wall Topology. ACS Macro Letters, 2016, 5, 1348-1352.	2.3	59
45	Structures and luminescent properties of four compounds based on binuclear metal-terpyridine building blocks. Journal of Coordination Chemistry, 2016, 69, 966-975.	0.8	9
46	Two new three-dimensional metal–organic frameworks with 4-connected diamondoid and unusual (6,16)-connected net topologies based on planar tetranuclear squares as secondary building units. CrystEngComm, 2016, 18, 1174-1183.	1.3	15
47	Construction of four d ¹⁰ coordination polymers containing binuclear rings as building blocks from 4′-(2H-tetrazol-5-yl)biphenyl-4-carboxylic acid. Journal of Coordination Chemistry, 2016, 69, 976-984.	0.8	6
48	Crystal structure of [3-(1H-benzimidazol-2-yl)propanoato-κN3][3-(1H-benzimidazol-2-yl)propanoic acid-κN3]copper(I). Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, m5-m6.	0.2	2
49	Construction of Two 3D Main Group Coordination Polymers Based on 2â€(2â€Pyridyl)â€4,5â€imidazoleâ€dicarboxylic Acid: Structures and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2677-2682.	0.6	3
50	Construction, crystal structures, and luminescence properties of three coordination polymers from the same precursor, 4-(1H-benzimidazol-1-yl)benzonitrile. Transition Metal Chemistry, 2015, 40, 699-706.	0.7	3
51	Syntheses, structures, and properties of nine d10or p-block coordination polymers based on a ligand containing both terpyridyl and sulfo groups. CrystEngComm, 2015, 17, 5538-5550.	1.3	12
52	Synthesis of a New Cyclosporine-based Stationary Phase and Separation Behaviors toward Aromatic Positional Isomers by High-Performance Liquid Chromatography. Journal of Chromatographic Science, 2015, 53, 548-553.	0.7	3
53	Assembly of Cd(<scp>ii</scp>) coordination polymers: structural variation, supramolecular isomers, and temperature/anion-induced solvent-mediated structural transformations. CrystEngComm, 2015, 17, 947-959.	1.3	36
54	Two Coordination Polymers Constructed from 5â€(4â€Pyridyl)â€1Hâ€tetrazole Ligands with Different Organic Carboxylates: Structure and Luminescence Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2057-2061.	0.6	6

#	Article	IF	CITATIONS
55	Construction of terpyridine–Ln(iii) coordination polymers: structural diversity, visible and NIR luminescence properties and response to nerve-agent mimics. CrystEngComm, 2014, 16, 2898.	1.3	39
56	Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chemical Science, 2014, 5, 4693-4700.	3.7	295
57	Construction of several new s-/p-block complexes containing binuclear metal–terpyridine building blocks: dependence of structural diversity on the number of coordinated water molecules. CrystEngComm, 2014, 16, 4029.	1.3	16
58	Construction of Ag(I)–Ln(III) Heterometallic Coordination Polymers Based on Binuclear Ag ₂ (DSPT) ₂ (H ₂ DSPT = 4′-(2,4-Disulfophenyl)-2,2′:6′2″-terpyr Rings and Ln(III) Dimeric Molecular Building Blocks. Crystal Growth and Design, 2013, 13, 4428-4434.	id in æ)	43
59	The construction of Cu(i)/Cu(ii) coordination polymers based on pyrazine–carboxylate: Structural diversity tuned by in situ hydrolysis reaction. CrystEngComm, 2013, 15, 5359.	1.3	26
60	The construction of two lanthanide coordination polymers based on 5-hydroxyisophthalate and bipyridine. Journal of Coordination Chemistry, 2013, 66, 2659-2668.	0.8	7
61	Construction of luminescent three-dimensional Ln(iii)–Zn(ii) heterometallic coordination polymers based on 2-pyridyl imidazole dicarboxylate. CrystEngComm, 2012, 14, 8236.	1.3	29
62	Two Types of New Three-Dimensional d–f Heterometallic Coordination Polymers Based on 2-(Pyridin-3-yl)-1 <i>H</i> -Imidazole-4,5-Dicarboxylate and Oxalate Ligands: Syntheses, Structures, Luminescence, and Magnetic Properties. Crystal Growth and Design, 2012, 12, 4441-4449.	1.4	63
63	Construction of Ba(II) Coordination Polymers Based on Imidazole-Based Dicarboxylate Ligands: Structural Diversity Tuned by Alcohol Solvents. Crystal Growth and Design, 2012, 12, 3575-3582.	1.4	59
64	A Series of New Three-Dimensional d–f Heterometallic Coordination Polymers with Rare 10-Connected bct Net Topology Based on Planar Hexanuclear Heterometallic Second Building Units. Crystal Growth and Design, 2012, 12, 5737-5745.	1.4	67
65	An unprecedented (3,4,14)-connected 3D metal–organic framework based on planar octanuclear lead(ii) clusters as a secondary building unit. CrystEngComm, 2012, 14, 1193-1196.	1.3	36
66	Anion-dependent assembly and solvent-mediated structural transformations of three Cd(ii) coordination polymers based on 1H-imidazole-4-carboxylic acid. CrystEngComm, 2012, 14, 2308.	1.3	36
67	Assembly of Chiral/Achiral Coordination Polymers Based on 2-(Pyridine-3-yl)-1H-4,5-imidazoledicarboxylic Acid: Chirality Transfer between Chiral Two-Dimensional Networks Containing Helical Chains. Crystal Growth and Design, 2012, 12, 2355-2361.	1.4	57
68	Spontaneous resolution of a coordination polymer containing stereogenic five-coordinate Zn(ii) centers and achiral ligands with axially chiral conformation. CrystEngComm, 2012, 14, 6241.	1.3	13
69	Construction of Metal-Imidazole-Based Dicarboxylate Networks with Topological Diversity: Thermal Stability, Gas Adsorption, and Fluorescent Emission Properties. Crystal Growth and Design, 2012, 12, 2178-2186.	1.4	87
70	Synthesis, crystal structures and properties of Ln(iii)–Cu(i)–Na(i) and Ln(iii)–Ag(i) heterometallic coordination polymers. CrystEngComm, 2011, 13, 3910.	1.3	29
71	An unprecedented supramolecular network with channels filled by 1D coordination polymer chains: Cocrystallization of Ag(i)-4,4′-bipyridine and Ag(i)-benzimidazole complexes. CrystEngComm, 2011, 13, 6345.	1.3	17
72	Construction of four 3d-4d/4d complexes based on salen-type schiff base ligands. CrystEngComm, 2011, 13, 6911.	1.3	34

#	Article	IF	CITATIONS
73	The construction of coordination networks based on imidazole-based dicarboxylate ligand containing hydroxymethyl group. CrystEngComm, 2011, 13, 883-888.	1.3	68
74	Synthesis, Crystal Structures and Thermal Stabilities of Lanthanide Coordination Polymers with 5-Nitroisophthalate. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 723-729.	1.9	2
75	Synthesis, crystal structure, supramolecular assembly, and thermal stability of two new lanthanide coordination polymers based on α-naphthoxyacetate. Structural Chemistry, 2011, 22, 943-949.	1.0	2
76	trans-Diaquabis(1H-imidazole-4-carboxylato-κ2N3,O4)nickel(II). Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m865-m865.	0.2	8
77	Syntheses and conversions of dinuclear cadmium(ii) compounds containing N2O/N2O2 donor tridentate/tetradentate asymmetrical Schiff base ligands. CrystEngComm, 2010, 12, 4012.	1.3	23
78	Metal-Directed Assembly of Coordination Polymers with a Multifunctional Semirigid Ligand Containing Pyridyl and Benzimidazolyl Donor Groups. Crystal Growth and Design, 2009, 9, 2341-2353.	1.4	92
79	An unusual 3D coordination polymer assembled through parallel interpenetrating and polycatenating of (6,3) nets. CrystEngComm, 2009, 11, 680.	1.3	58
80	Assembly of Cdl2-type coordination networks from triangular ligand and octahedral metal center: topological analysis and potential framework porosity. Chemical Communications, 2008, , 356-358.	2.2	78
81	Dimension Increase via Hydrogen Bonding and Weak Coordination Interactions from Simple Complexes of 2-(Pyridyl)benzimidazole Ligands. Crystal Growth and Design, 2007, 7, 2481-2490.	1.4	48
82	2,2′-(Iminodimethylene)bis(1H-benzimidazolium)(1+) chloride. Acta Crystallographica Section C: Crystal Structure Communications, 2005, 61, o642-o644.	0.4	4
83	A Ni(<scp>ii</scp>) metal–organic framework with helical channels for the capture of iodine <i>via</i> guest exchange induced amorphization. New Journal of Chemistry, 0, , .	1.4	7