List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6736143/publications.pdf Version: 2024-02-01

		15504	10158
141	21,722	65	140
papers	citations	h-index	g-index
143	143	143	19392
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 2009, 9, 1752-1758.	9.1	2,822
2	Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nature Communications, 2016, 7, 11204.	12.8	803
3	Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nature Catalysis, 2019, 2, 304-313.	34.4	757
4	Defect Effects on TiO ₂ Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Advanced Materials, 2018, 30, 1705369.	21.0	751
5	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology, 2018, 13, 856-861.	31.5	741
6	Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nature Communications, 2018, 9, 1320.	12.8	658
7	Single Pt Atoms Confined into a Metal–Organic Framework for Efficient Photocatalysis. Advanced Materials, 2018, 30, 1705112.	21.0	599
8	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	13.7	558
9	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	12.8	537
10	Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nature Catalysis, 2021, 4, 407-417.	34.4	517
11	Bismuth Single Atoms Resulting from Transformation of Metal–Organic Frameworks and Their Use as Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16569-16573.	13.7	501
12	lridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry, 2020, 12, 764-772.	13.6	452
13	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Đoped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16086-16090.	13.8	431
14	Single Tungsten Atoms Supported on MOFâ€Derived Nâ€Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1800396.	21.0	427
15	Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15, 390-397.	31.5	420
16	Efficient alkaline hydrogen evolution on atomically dispersed Ni–N _x Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics. Energy and Environmental Science, 2019, 12, 149-156.	30.8	416
17	Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2017, 139, 7294-7301.	13.7	354
18	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	13.8	344

#	Article	IF	CITATIONS
19	Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 2016, 7, 13216.	12.8	334
20	Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 11286-11292.	13.7	328
21	Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12692-12697.	7.1	325
22	Rareâ€Earth Single Erbium Atoms for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 10651-10657.	13.8	314
23	Boosting Oxygen Reduction Catalysis with Fe–N ₄ Sites Decorated Porous Carbons toward Fuel Cells. ACS Catalysis, 2019, 9, 2158-2163.	11.2	297
24	Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy and Environmental Science, 2019, 12, 3508-3514.	30.8	278
25	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Metal Isolatedâ€Singleâ€Atomicâ€Site Catalysts. Advanced Materials, 2018, 30, e1706508.	21.0	266
26	Confined Pyrolysis within Metal–Organic Frameworks To Form Uniform Ru ₃ Clusters for Efficient Oxidation of Alcohols. Journal of the American Chemical Society, 2017, 139, 9795-9798.	13.7	258
27	Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nature Communications, 2019, 10, 4875.	12.8	253
28	Discovery of main group single Sb–N ₄ active sites for CO ₂ electroreduction to formate with high efficiency. Energy and Environmental Science, 2020, 13, 2856-2863.	30.8	245
29	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie - International Edition, 2021, 60, 6170-6176.	13.8	236
30	Design of a Singleâ€Atom Indium ^{Î′+} –N ₄ Interface for Efficient Electroreduction of CO ₂ to Formate. Angewandte Chemie - International Edition, 2020, 59, 22465-22469.	13.8	232
31	Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Science Advances, 2017, 3, e1603068.	10.3	224
32	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 13388-13393.	13.8	201
33	A General Strategy for Fabricating Isolated Single Metal Atomic Site Catalysts in Y Zeolite. Journal of the American Chemical Society, 2019, 141, 9305-9311.	13.7	191
34	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19085-19091.	13.8	189
35	Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 4192-4198.	13.8	183
36	Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nature Catalysis, 2022, 5, 300-310.	34.4	175

#	Article	IF	CITATIONS
37	Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and <i>operando</i> identifying their active phase for the oxygen evolution reaction. Energy and Environmental Science, 2019, 12, 739-746.	30.8	163
38	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie - International Edition, 2019, 58, 4271-4275.	13.8	162
39	<i>Operando</i> X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy and Environmental Science, 2018, 11, 2945-2953.	30.8	157
40	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	13.8	151
41	The Electronic Metal–Support Interaction Directing the Design of Single Atomic Site Catalysts: Achieving High Efficiency Towards Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19233-19239.	2.0	149
42	Mesoporous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Isolated Singleâ€Atom Pd Catalyst for Highly Efficient Semihydrogenation of Acetylene. Advanced Materials, 2019, 31, e1901024.	21.0	146
43	Atomically Dispersed Ru on Ultrathin Pd Nanoribbons. Journal of the American Chemical Society, 2016, 138, 13850-13853.	13.7	132
44	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie - International Edition, 2022, 61, .	13.8	127
45	Efficient Nitrate Synthesis via Ambient Nitrogen Oxidation with Ruâ€Doped TiO ₂ /RuO ₂ Electrocatalysts. Advanced Materials, 2020, 32, e2002189.	21.0	125
46	Strain Regulation to Optimize the Acidic Water Oxidation Performance of Atomic‣ayer IrO <i>_x</i> . Advanced Materials, 2019, 31, e1903616.	21.0	121
47	Atomically dispersed Ni–Ru–P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy, 2021, 80, 105467.	16.0	114
48	Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 6840-6846.	10.3	113
49	Engineering a metal–organic framework derived Mn–N ₄ –C _x S _y atomic interface for highly efficient oxygen reduction reaction. Chemical Science, 2020, 11, 5994-5999.	7.4	113
50	Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nature Communications, 2022, 13, 1322.	12.8	113
51	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie - International Edition, 2021, 60, 22522-22528.	13.8	112
52	Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst. Nature Communications, 2017, 8, 591.	12.8	110
53	Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science, 2020, 11, 786-790.	7.4	110
54	In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Research, 2018, 11, 2217-2228.	10.4	108

#	Article	IF	CITATIONS
55	Charge deformation and orbital hybridization: intrinsic mechanisms on tunable chromaticity of Y3Al5O12:Ce3+ luminescence by doping Gd3+ for warm white LEDs. Scientific Reports, 2015, 5, 11514.	3.3	102
56	Mg ₃₊ <i>_δ</i> Sb <i>_x</i> Bi _{2â^'} <i>_x</i> Family: A Promising Substitute for the Stateâ€ofâ€theâ€Art nâ€Type Thermoelectric Materials near Room Temperature. Advanced Functional Materials, 2019, 29, 1807235.	14.9	98
57	Solvothermal Synthesis of Ternary Cu ₂ MoS ₄ Nanosheets: Structural Characterization at the Atomic Level. Small, 2014, 10, 4637-4644.	10.0	97
58	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 4642-4646.	13.8	93
59	Activating low-temperature diesel oxidation by single-atom Pt on TiO2 nanowire array. Nature Communications, 2020, 11, 1062.	12.8	90
60	Highly Boosted Reaction Kinetics in Carbon Dioxide Electroreduction by Surfaceâ€Introduced Electronegative Dopants. Advanced Functional Materials, 2021, 31, 2008146.	14.9	88
61	Creating High Regioselectivity by Electronic Metal–Support Interaction of a Single-Atomic-Site Catalyst. Journal of the American Chemical Society, 2021, 143, 15453-15461.	13.7	88
62	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16302-16306.	2.0	82
63	Tuning phase transitions in FeSe thin flakes by field-effect transistor with solid ion conductor as the gate dielectric. Physical Review B, 2017, 95, .	3.2	77
64	Remarkable enhancement of dichloromethane oxidation over potassium-promoted Pt/Al2O3 catalysts. Journal of Catalysis, 2014, 311, 314-324.	6.2	76
65	Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules. Nano Research, 2015, 8, 2329-2339.	10.4	75
66	Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21906-21913.	7.1	67
67	Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 2020, 13, 947-951.	10.4	65
68	High-Loading Single-Atomic-Site Silver Catalysts with an Ag ₁ –C ₂ N ₁ Structure Showing Superior Performance for Epoxidation of Styrene. ACS Catalysis, 2021, 11, 4946-4954.	11.2	62
69	Enhanced electrochemical sensing arsenic(III) with excellent anti-interference using amino-functionalized graphene oxide decorated gold microelectrode: XPS and XANES evidence. Sensors and Actuators B: Chemical, 2017, 245, 230-237.	7.8	60
70	Tuning the Electronic Structures of Multimetal Oxide Nanoplates to Realize Favorable Adsorption Energies of Oxygenated Intermediates. ACS Nano, 2020, 14, 17640-17651.	14.6	56
71	Highly Efficient Hydrogenation of Nitroarenes by N-Doped Carbon-Supported Cobalt Single-Atom Catalyst in Ethanol/Water Mixed Solvent. ACS Applied Materials & Interfaces, 2020, 12, 34021-34031.	8.0	56
72	Initial Reaction Mechanism of Platinum Nanoparticle in Methanol–Water System and the Anomalous Catalytic Effect of Water. Nano Letters, 2015, 15, 5961-5968.	9.1	52

#	Article	IF	CITATIONS
73	Spontaneous Delithiation under <i>Operando</i> Condition Triggers Formation of an Amorphous Active Layer in Spinel Cobalt Oxides Electrocatalyst toward Oxygen Evolution. ACS Catalysis, 2019, 9, 7389-7397.	11.2	52
74	Insight into the Role of Metal–Oxygen Bond and O 2p Hole in High-Voltage Cathode LiNi _{<i>x</i>} Mn _{2–<i>x</i>} O ₄ . Journal of Physical Chemistry C, 2017, 121, 16079-16087.	3.1	50
75	Controlled one-pot synthesis of RuCu nanocages and Cu@Ru nanocrystals for the regioselective hydrogenation of quinoline. Nano Research, 2016, 9, 2632-2640.	10.4	49
76	Rareâ€Earth Single Erbium Atoms for Enhanced Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2020, 132, 10738-10744.	2.0	49
77	Ru ₁ Co <i>_n</i> Single-Atom Alloy for Enhancing Fischer–Tropsch Synthesis. ACS Catalysis, 2021, 11, 1886-1896.	11.2	49
78	Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters. Cell Research, 2014, 24, 267-277.	12.0	39
79	Fabrication of graphene-encapsulated Na ₃ V ₂ (PO ₄) ₃ as high-performance cathode materials for sodium-ion batteries. RSC Advances, 2016, 6, 43591-43597.	3.6	39
80	<i>In situ</i> growth of a POMOF-derived nitride based composite on Cu foam to produce hydrogen with enhanced water dissociation kinetics. Journal of Materials Chemistry A, 2019, 7, 13559-13566.	10.3	39
81	Bi/Zn Dual Singleâ€Atom Catalysts for Electroreduction of CO ₂ to Syngas. ChemCatChem, 2022, 14, .	3.7	37
82	Molten-salt synthesis of porous La0.6Sr0.4Co0.2Fe0.8O2.9 perovskite as an efficient electrocatalyst for oxygen evolution. Nano Research, 2018, 11, 4796-4805.	10.4	35
83	Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO ₂ reduction reaction. Chemical Science, 2022, 13, 6366-6372.	7.4	35
84	Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catalysis, 2021, 11, 2669-2675.	11.2	34
85	Speciation of Cu and Zn in Two Colored Oyster Species Determined by X-ray Absorption Spectroscopy. Environmental Science & Technology, 2015, 49, 6919-6925.	10.0	33
86	An N,S-Anchored Single-Atom Catalyst Derived from Domestic Waste for Environmental Remediation. ACS ES&T Engineering, 2021, 1, 1460-1469.	7.6	33
87	Tandem catalyzing the hydrodeoxygenation of 5-hydroxymethylfurfural over a Ni ₃ Fe intermetallic supported Pt single-atom site catalyst. Chemical Science, 2021, 12, 4139-4146.	7.4	33
88	Copper Phosphate as a Cathode Material for Rechargeable Li Batteries and Its Electrochemical Reaction Mechanism. Chemistry of Materials, 2015, 27, 5736-5744.	6.7	32
89	Topological self-template directed synthesis of multi-shelled intermetallic Ni ₃ Ga hollow microspheres for the selective hydrogenation of alkyne. Chemical Science, 2019, 10, 614-619.	7.4	31
90	Design of a Singleâ€Atom Indium Î′+ –N 4 Interface for Efficient Electroreduction of CO 2 to Formate. Angewandte Chemie, 2020, 132, 22651-22655.	2.0	29

#	Article	IF	CITATIONS
91	A Supported Pd ₂ Dualâ€Atom Site Catalyst for Efficient Electrochemical CO ₂ Reduction. Angewandte Chemie, 2021, 133, 13500-13505.	2.0	29
92	Simple hydrothermal synthesis of metal oxides coupled nanocomposites: Structural, optical, magnetic and photocatalytic studies. Applied Surface Science, 2015, 353, 553-563.	6.1	28
93	Theoretical screening of VSe2 as support for enhanced electrocatalytic performance of transition-metal single atoms. Journal of Colloid and Interface Science, 2021, 590, 210-218.	9.4	28
94	Correlation investigation on the visible-light-driven photocatalytic activity and coordination structure of rutile Sn-Fe-TiO2 nanocrystallites for methylene blue degradation. Catalysis Today, 2015, 258, 112-119.	4.4	27
95	Engineering the Local Atomic Environments of Indium Singleâ€Atom Catalysts for Efficient Electrochemical Production of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	2.0	27
96	N coupling with S-coordinated Ru nanoclusters for highly efficient hydrogen evolution in alkaline media. Journal of Materials Chemistry A, 2021, 9, 12659-12669.	10.3	26
97	X-ray absorption spectroscopy study on the thermal and hydrazine reduction of graphene oxide. Journal of Electron Spectroscopy and Related Phenomena, 2014, 196, 89-93.	1.7	25
98	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie, 2019, 131, 4315-4319.	2.0	25
99	Highly Active Surface Structure in Nanosized Spinel Cobalt-Based Oxides for Electrocatalytic Water Splitting. Journal of Physical Chemistry C, 2018, 122, 14447-14458.	3.1	24
100	Fabricating Quasi-Free-Standing Graphene on a SiC(0001) Surface by Steerable Intercalation of Iron. Journal of Physical Chemistry C, 2018, 122, 21484-21492.	3.1	23
101	Cube-like Cu2MoS4 photocatalysts for visible light-driven degradation of methyl orange. AIP Advances, 2015, 5, 077130.	1.3	22
102	Extraction of local coordination structure in a low-concentration uranyl system by XANES. Journal of Synchrotron Radiation, 2016, 23, 758-768.	2.4	22
103	Silver Singleâ€Atom Catalyst for Efficient Electrochemical CO ₂ Reduction Synthesized from Thermal Transformation and Surface Reconstruction. Angewandte Chemie, 2021, 133, 6235-6241.	2.0	22
104	Atomic-level insights into the steric hindrance effect of single-atom Pd catalyst to boost the synthesis of dimethyl carbonate. Applied Catalysis B: Environmental, 2022, 304, 120922.	20.2	22
105	Dynamic Activation of Adsorbed Intermediates via Axial Traction for the Promoted Electrochemical CO ₂ Reduction. Angewandte Chemie, 2021, 133, 4238-4244.	2.0	20
106	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156.	2.0	19
107	MOF derived high-density atomic platinum heterogeneous catalyst for C–H bond activation. Materials Chemistry Frontiers, 2020, 4, 1158-1163.	5.9	19
108	La-doping effect on spin–orbit coupled Sr ₂ IrO ₄ probed by x-ray absorption spectroscopy. New Journal of Physics, 2016, 18, 093019.	2.9	18

#	Article	IF	CITATIONS
109	High-performance and heat-resistant Ce:YAG phosphor in glass for laser lighting. Journal of Alloys and Compounds, 2022, 921, 166083.	5.5	17
110	Recent Advances in <scp>Ptâ€Based</scp> Ultrathin Nanowires: Synthesis and Electrocatalytic Applications ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1389-1396.	4.9	16
111	Single-Atom Ru on Al ₂ O ₃ for Highly Active and Selective 1,2-Dichloroethane Catalytic Degradation. ACS Applied Materials & Interfaces, 2021, 13, 53683-53690.	8.0	16
112	Efficient hydrogen evolution catalyzed by amorphous molybdenum sulfide/N-doped active carbon hybrid on carbon fiber paper. International Journal of Hydrogen Energy, 2018, 43, 15135-15143.	7.1	14
113	Universal Anticancer Cu(DTC) ₂ Discriminates between Thiols and Zinc(II) Thiolates Oxidatively. Angewandte Chemie - International Edition, 2019, 58, 6070-6073.	13.8	14
114	How water molecules affect the catalytic activity of hydrolases - A XANES study of the local structures of peptide deformylase. Scientific Reports, 2014, 4, 7453.	3.3	13
115	Carbon nitride supported Ni _{0.5} Co _{0.5} O nanoparticles with strong interfacial interaction to enhance the hydrolysis of ammonia borane. RSC Advances, 2019, 9, 11552-11557.	3.6	13
116	Ce:GdYAG phosphor-in-glass: An innovative yellow-emitting color converter for solid-state laser lighting. Journal of Materials Science and Technology, 2023, 134, 42-49.	10.7	13
117	Variation of the coordination environment and its effect on the white light emission properties in a Mn-doped ZnO–ZnS complex structure. Physical Chemistry Chemical Physics, 2014, 16, 4544.	2.8	12
118	PtAl truncated octahedron nanocrystals for improved formic acid electrooxidation. Chemical Communications, 2018, 54, 3951-3954.	4.1	12
119	Tris-amidoximate uranyl complexes <i>via</i> η ² binding mode coordinated in aqueous solution shown by X-ray absorption spectroscopy and density functional theory methods. Journal of Synchrotron Radiation, 2018, 25, 514-522.	2.4	12
120	Phase and interface engineering of nickel carbide nanobranches for efficient hydrogen oxidation catalysis. Journal of Materials Chemistry A, 2021, 9, 26323-26329.	10.3	12
121	Polyoxometalateâ€Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semiâ€Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angewandte Chemie, 2021, 133, 22696-22702.	2.0	10
122	Local structure investigation of the active site of the imidazolonepropionase fromBacillus subtilisby XANES spectroscopy andab initiocalculations. Journal of Synchrotron Radiation, 2008, 15, 129-133.	2.4	9
123	Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors. Scientific Reports, 2016, 6, 37394.	3.3	9
124	Electron Transfer and Local Atomic Displacement in Sr1–xCexFBiS2 Revealed by X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 8525-8530.	3.1	9
125	The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule. AIP Advances, 2016, 6, .	1.3	8
126	A critical point in Sr2-IrO4 and less distorted IrO6 octahedra induced by deep Sr-vacancies. Materials Research Bulletin, 2017, 90, 1-7.	5.2	8

#	Article	IF	CITATIONS
127	Heterostructures induced between platinum nanoparticles and vanadium carbide boosting hydrogen evolution reaction. Applied Catalysis A: General, 2022, 633, 118512.	4.3	7
128	Bidirectional modulation interaction between monatomic Pt and Tin+ sites on Ti4O7 for high-efficiency and durable oxygen reduction. Journal of Catalysis, 2022, 411, 149-157.	6.2	7
129	Role of local structure distortion in the suppression of superconductivity for Eu3-Sr Bi2S4F4 system. Journal of Alloys and Compounds, 2018, 743, 547-552.	5.5	6
130	3D local structure around Zn in Kti11p as a representative Zn-(Cys)4 motif as obtained by MXAN. Biochemical and Biophysical Research Communications, 2008, 374, 28-32.	2.1	4
131	Magnetism modulation in Cu-doped AlN via coupling between AlN thin film and ferroelectric substrate. Journal of Alloys and Compounds, 2015, 618, 236-239.	5.5	4
132	A porous heterostructure catalyst for oxygen evolution: synergy between IrP ₂ nanocrystals and ultrathin P,N-codoped carbon nanosheets. Nanotechnology, 2021, 32, 245402.	2.6	4
133	Promotional effect of ZrO2 and WO3 on bimetallic Pt-Pd diesel oxidation catalyst. Environmental Science and Pollution Research, 2021, , 1.	5.3	4
134	3D local structure around copper site of rabbit prion-related protein: Quantitative determination by XANES spectroscopy combined with multiple-scattering calculations. Radiation Physics and Chemistry, 2014, 95, 69-72.	2.8	3
135	Tunable metal-insulator transition in Nd1â^'xYxNiO3 (x = 0.3, 0.4) perovskites thin film at near room temperature. Applied Physics Letters, 2015, 107, .	3.3	3
136	Investigation of the fine structure around the copper site in copper/zinc superoxide dismutase by XANES combined with ab initio calculations. Radiation Physics and Chemistry, 2017, 137, 88-92.	2.8	2
137	Manifestation of the structural stability of Mg-doped Zn4Sb3 via atomic fine structure investigation. Solid State Communications, 2017, 261, 26-31.	1.9	2
138	Enhanced insulating behavior in the Ir-vacant Sr2Ir1–x O4 system dominated by the local structureÂdistortion. Journal of Synchrotron Radiation, 2018, 25, 1123-1128.	2.4	2
139	X-ray absorption near-edge structure study on the configuration of Cu ^{2+} /histidine complexes at different pH values. Chinese Physics B, 2016, 25, 048701.	1.4	1
140	Quantitative investigation of the local structure around cobalt ion in two different peptide deformylase by XANES spectroscopy. Journal of Physics: Conference Series, 2013, 430, 012043.	0.4	0
141	An overview on the research of Sr2IrO4-based system probed by X-ray absorption spectroscopy. Modern Physics Letters B, 2018, 32, 1850094.	1.9	0