

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6736049/publications.pdf Version: 2024-02-01

Ι ΔΝΙ ΕΙΤ

#	Article	IF	CITATIONS
1	Large area van der Waals epitaxy of II–VI CdSe thin films for flexible optoelectronics and full-color imaging. Nano Research, 2022, 15, 368-376.	5.8	14
2	A New Strategy for Selective Area Growth of Highly Uniform InGaAs/InP Multiple Quantum Well Nanowire Arrays for Optoelectronic Device Applications. Advanced Functional Materials, 2022, 32, 2103057.	7.8	21
3	Semiconductor Nanowire Arrays for Highâ€Performance Miniaturized Chemical Sensing. Advanced Functional Materials, 2022, 32, 2107596.	7.8	16
4	A New Strategy for Selective Area Growth of Highly Uniform InGaAs/InP Multiple Quantum Well Nanowire Arrays for Optoelectronic Device Applications (Adv. Funct. Mater. 3/2022). Advanced Functional Materials, 2022, 32, .	7.8	1
5	Investigation of light–matter interaction in single vertical nanowires in ordered nanowire arrays. Nanoscale, 2022, 14, 3527-3536.	2.8	6
6	Flexible InP–ZnO nanowire heterojunction light emitting diodes. Nanoscale Horizons, 2022, 7, 446-454.	4.1	8
7	Design of InAs nanosheet arrays with ultrawide polarization-independent high absorption for infrared photodetection. Applied Physics Letters, 2022, 120, .	1.5	6
8	Self-frequency-conversion nanowire lasers. Light: Science and Applications, 2022, 11, 120.	7.7	13
9	Observation of polarity-switchable photoconductivity in III-nitride/MoSx core-shell nanowires. Light: Science and Applications, 2022, 11, .	7.7	38
10	Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Interfaces, 2022, 14, 34151-34158.	4.0	13
11	Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Research, 2021, 14, 1912-1936.	5.8	34
12	Nanowires: a New Horizon for Polarization-resolved Terahertz Time-domain Spectroscopy. , 2021, , .		0
13	Ultralow Threshold, Single-Mode InGaAs/GaAs Multiquantum Disk Nanowire Lasers. ACS Nano, 2021, 15, 9126-9133.	7.3	19
14	Terahertz Full-polarization-state Detection by Nanowires. , 2021, , .		0
15	A Highâ€Efficiency Wavelengthâ€Tunable Monolayer LED with Hybrid Continuousâ€Pulsed Injection. Advanced Materials, 2021, 33, e2101375.	11.1	10
16	Slowing Hot-Electron Relaxation in Mix-Phase Nanowires for Hot-Carrier Photovoltaics. Nano Letters, 2021, 21, 7761-7768.	4.5	15
17	Light Absorption in Nanowire Photonic Crystal Slabs and the Physics of Exceptional Points: The Shape Shifter Modes. Sensors, 2021, 21, 5420.	2.1	0
18	Broadband GaAsSb Nanowire Array Photodetectors for Filter-Free Multispectral Imaging. Nano Letters, 2021, 21, 7388-7395.	4.5	36

#	Article	IF	CITATIONS
19	Bidirectional photocurrent in p–n heterojunction nanowires. Nature Electronics, 2021, 4, 645-652.	13.1	129
20	Direct observation and manipulation of hot electrons at room temperature. National Science Review, 2021, 8, nwaa295.	4.6	16
21	Selfâ€Powered InP Nanowire Photodetector for Singleâ€Photon Level Detection at Room Temperature. Advanced Materials, 2021, 33, e2105729.	11.1	18
22	High-speed InGaAs/InP Quantum Well Nanowire Array Light Emitting Diodes at Telecommunication Wavelength. , 2021, , .		0
23	Engineering Ill–V Semiconductor Nanowires for Device Applications. Advanced Materials, 2020, 32, e1904359.	11.1	43
24	Broadband Photodetectors: Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors (Adv. Mater. 45/2020). Advanced Materials, 2020, 32, 2070338.	11.1	2
25	Liquidâ€Metal Synthesized Ultrathin SnS Layers for Highâ€Performance Broadband Photodetectors. Advanced Materials, 2020, 32, e2004247.	11.1	66
26	In situ passivation of GaAsSb nanowires for enhanced infrared photoresponse. Nanotechnology, 2020, 31, 244002.	1.3	13
27	Review on III-V Semiconductor Single Nanowire-Based Room Temperature Infrared Photodetectors. Materials, 2020, 13, 1400.	1.3	44
28	Highly uniform InGaAs/InP quantum well nanowire array-based light emitting diodes. Nano Energy, 2020, 71, 104576.	8.2	23
29	Design of Ultrathin InP Solar Cell Using Carrier Selective Contacts. IEEE Journal of Photovoltaics, 2020, 10, 1657-1666.	1.5	18
30	Three-dimensional cross-nanowire networks recover full terahertz state. Science, 2020, 368, 510-513.	6.0	81
31	(Invited) InGaAs/InP Quantum Well Nanowire Surface Emitting LEDs. ECS Meeting Abstracts, 2020, MA2020-01, 1077-1077.	0.0	0
32	Light-Induced Positive and Negative Photoconductances of InAs Nanowires toward Rewritable Nonvolatile Memory. ACS Applied Electronic Materials, 2019, 1, 1825-1831.	2.0	14
33	Nanowire Quantum Dot Surface Engineering for High Temperature Single Photon Emission. ACS Nano, 2019, 13, 13492-13500.	7.3	22
34	High Fluence Chromium and Tungsten Bowtie Nano-antennas. Scientific Reports, 2019, 9, 13023.	1.6	4
35	High-Efficiency Solar Cells from Extremely Low Minority Carrier Lifetime Substrates Using Radial Junction Nanowire Architecture. ACS Nano, 2019, 13, 12015-12023.	7.3	31
36	Design Principles for Fabrication of InP-Based Radial Junction Nanowire Solar Cells Using an Electron Selective Contact. IEEE Journal of Photovoltaics, 2019, 9, 980-991.	1.5	31

#	Article	IF	CITATIONS
37	Multiwavelength Single Nanowire InGaAs/InP Quantum Well Light-Emitting Diodes. Nano Letters, 2019, 19, 3821-3829.	4.5	32
38	Ferroelectric-Driven Exciton and Trion Modulation in Monolayer Molybdenum and Tungsten Diselenides. ACS Nano, 2019, 13, 5335-5343.	7.3	61
39	Unexpected benefits of stacking faults on the electronic structure and optical emission in wurtzite GaAs/GaInP core/shell nanowires. Nanoscale, 2019, 11, 9207-9215.	2.8	18
40	Ultrasensitive Mid-wavelength Infrared Photodetection Based on a Single InAs Nanowire. ACS Nano, 2019, 13, 3492-3499.	7.3	45
41	Electron selective contact for high efficiency core-shell nanowire solar cell. , 2019, , .		4
42	Damage analysis of a perfect broadband absorber by a femtosecond laser. Scientific Reports, 2019, 9, 15880.	1.6	5
43	Axial pâ€n junction design and characterization for InP nanowire array solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 237-244.	4.4	22
44	Broadband Metamaterial Absorbers. Advanced Optical Materials, 2019, 7, 1800995.	3.6	404
45	Enhancement of radiation tolerance in GaAs/AlGaAs core–shell and InP nanowires. Nanotechnology, 2018, 29, 225703.	1.3	8
46	Reducing Zn diffusion in single axial junction InP nanowire solar cells for improved performance. Progress in Natural Science: Materials International, 2018, 28, 178-182.	1.8	23
47	Chromium for High Fluence Bowtie Nano-Antennas. , 2018, , .		0
48	Room Temperature GaAsSb Array Photodetectors. , 2018, , .		1
49	The Route to Nanoscale Terahertz Technology: Nanowire-based Terahertz Detectors and Terahertz Modulators. , 2018, , .		0
50	Radial Growth Evolution of InGaAs/InP Multi-Quantum-Well Nanowires Grown by Selective-Area Metal Organic Vapor-Phase Epitaxy. ACS Nano, 2018, 12, 10374-10382.	7.3	26
51	High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector. ACS Applied Materials & Interfaces, 2018, 10, 43291-43298.	4.0	56
52	Vertically Emitting Indium Phosphide Nanowire Lasers. Nano Letters, 2018, 18, 3414-3420.	4.5	33
53	Ill–V Semiconductor Single Nanowire Solar Cells: A Review. Advanced Materials Technologies, 2018, 3, 1800005.	3.0	75
54	Indium phosphide based solar cell using ultra-thin ZnO as an electron selective layer. Journal Physics D: Applied Physics, 2018, 51, 395301.	1.3	28

#	Article	IF	CITATIONS
55	Identification and modulation of electronic band structures of single-phase β-(AlxGa1â^'x)2O3 alloys grown by laser molecular beam epitaxy. Applied Physics Letters, 2018, 113, .	1.5	43
56	Modal refractive index measurement in nanowire lasers—a correlative approach. Nano Futures, 2018, 2, 035004.	1.0	8
57	Giant optical pathlength enhancement in plasmonic thin film solar cells using core-shell nanoparticles. Journal Physics D: Applied Physics, 2018, 51, 295106.	1.3	42
58	Distinguishing cap and core contributions to the photoconductive terahertz response of single GaAs based core–shell–cap nanowire detectors. Lithuanian Journal of Physics, 2018, 58, .	0.1	1
59	Three-dimensional nano-heterojunction networks: a highly performing structure for fast visible-blind UV photodetectors. Nanoscale, 2017, 9, 2059-2067.	2.8	82
60	Radiation effects on GaAs/AlGaAs core/shell ensemble nanowires and nanowire infrared photodetectors. Nanotechnology, 2017, 28, 125702.	1.3	14
61	Single n ⁺ -i-n ⁺ InP nanowires for highly sensitive terahertz detection. Nanotechnology, 2017, 28, 125202.	1.3	26
62	Low-Voltage High-Performance UV Photodetectors: An Interplay between Grain Boundaries and Debye Length. ACS Applied Materials & Interfaces, 2017, 9, 2606-2615.	4.0	62
63	Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas. Scientific Reports, 2017, 7, 7503.	1.6	12
64	Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers. Nano Letters, 2017, 17, 4860-4865.	4.5	31
65	Broadband Single-Nanowire Photoconductive Terahertz Detectors. , 2017, , .		0
66	GaAs/AlGaAs core-shell ensemble nanowire photodetectors. , 2017, , .		0
67	2D Nanomaterials: Moleculeâ€Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption (Adv. Funct. Mater. 45/2016). Advanced Functional Materials, 2016, 26, 8356-8356.	7.8	1
68	Tunable Bandâ€ S elective UVâ€Photodetectors by 3D Selfâ€Assembly of Heterogeneous Nanoparticle Networks. Advanced Functional Materials, 2016, 26, 7359-7366.	7.8	50
69	Efficiency enhancement of axial junction InP single nanowire solar cells by dielectric coating. Nano Energy, 2016, 28, 106-114.	8.2	58
70	Single nanowire green InGaN/GaN light emitting diodes. Nanotechnology, 2016, 27, 435205.	1.3	16
71	Structural Engineering of Nanoâ€Grain Boundaries for Lowâ€Voltage UVâ€Photodetectors with Gigantic Photo―to Darkâ€Current Ratios. Advanced Optical Materials, 2016, 4, 1787-1795.	3.6	42
72	Moleculeâ€Induced Conformational Change in Boron Nitride Nanosheets with Enhanced Surface Adsorption. Advanced Functional Materials, 2016, 26, 8202-8210.	7.8	47

#	Article	IF	CITATIONS
73	Broadband Phase-Sensitive Single InP Nanowire Photoconductive Terahertz Detectors. Nano Letters, 2016, 16, 4925-4931.	4.5	46
74	Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires. Nature Communications, 2016, 7, 11927.	5.8	68
75	Simultaneous Selective-Area and Vapor–Liquid–Solid Growth of InP Nanowire Arrays. Nano Letters, 2016, 16, 4361-4367.	4.5	57
76	Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic Semiconductors. ACS Nano, 2016, 10, 2046-2053.	7.3	92
77	Ultraporous Electronâ€Đepleted ZnO Nanoparticle Networks for Highly Sensitive Portable Visibleâ€Blind UV Photodetectors. Advanced Materials, 2015, 27, 4336-4343.	11.1	222
78	Room temperature GaAsSb single nanowire infrared photodetectors. Nanotechnology, 2015, 26, 445202.	1.3	63
79	Tunable Polarity in a Ill–V Nanowire by Droplet Wetting and Surface Energy Engineering. Advanced Materials, 2015, 27, 6096-6103.	11.1	69
80	Photoconductive terahertz receivers utilizing single semiconductor nanowires. , 2015, , .		0
81	Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells. Applied Physics Letters, 2015, 106, .	1.5	10
82	Influence of Electrical Design on Core–Shell GaAs Nanowire Array Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 854-864.	1.5	44
83	Colossal Dielectric Permittivity in (Nb+Al) Codoped Rutile TiO ₂ Ceramics: Compositional Gradient and Local Structure. Chemistry of Materials, 2015, 27, 4934-4942.	3.2	189
84	Spatially Resolved Doping Concentration and Nonradiative Lifetime Profiles in Single Si-Doped InP Nanowires Using Photoluminescence Mapping. Nano Letters, 2015, 15, 3017-3023.	4.5	43
85	Single Nanowire Terahertz Detectors. , 2015, , .		1
86	Single Nanowire Photoconductive Terahertz Detectors. Nano Letters, 2015, 15, 206-210.	4.5	105
87	Direct Characterization of Axial p-n Junctions for InP Nanowire Array Solar Cells Using Electron Beam-Induced Current. , 2015, , .		1
88	Measurement of doping concentration, internal quantum efficiency and non-radiative lifetime of InP nanowires. , 2014, , .		1
89	Selective area epitaxial growth of InP nanowire array for solar cell applications. , 2014, , .		1
90	Single GaAs/AlGaAs nanowire photoconductive terahertz detectors. , 2014, , .		1

#	Article	IF	CITATIONS
91	Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing. Nano Letters, 2014, 14, 5206-5211.	4.5	198
92	Spectral tuning of InGaAs/GaAs quantum dot infrared photodetectors with bandpass guidedâ€mode resonance filters. Physica Status Solidi - Rapid Research Letters, 2014, 8, 69-73.	1.2	0
93	The role of intersubband optical transitions on the electrical properties of InGaAs/GaAs quantum dot solar cells. Progress in Photovoltaics: Research and Applications, 2013, 21, 736-746.	4.4	38
94	Nanostructured photovoltaics. Journal Physics D: Applied Physics, 2013, 46, 020301.	1.3	0
95	Three-Dimensional in Situ Photocurrent Mapping for Nanowire Photovoltaics. Nano Letters, 2013, 13, 1405-1409.	4.5	39
96	A study of quantum well solar cell structures with bound-to-continuum transitions for reduced carrier recombination. Applied Physics Letters, 2013, 102, 213903.	1.5	1
97	Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers. Optics Express, 2013, 21, 8276.	1.7	3
98	Periodic dielectric structures for light-trapping in InGaAs/GaAs quantum well solar cells. Optics Express, 2013, 21, A324.	1.7	10
99	Integration of bandpass guided-mode resonance filters with mid-wavelength infrared photodetectors. Journal Physics D: Applied Physics, 2013, 46, 095104.	1.3	13
100	(Invited) III-V Nanowires for Optoelectronic Applications. ECS Transactions, 2013, 58, 93-98.	0.3	0
101	Compound semiconductor nanowires for optoelectronic devices. , 2013, , .		0
102	Monolithically integrated multi-section semiconductor laser by selective area quantum well intermixing. , 2012, , .		0
103	Coupling of light from microdisk lasers to nano-antennas with nano-tapers. , 2012, , .		0
104	Intermixing of InGaAs/GaAs quantum wells and quantum dots using sputter-deposited silicon oxynitride capping layers. Journal of Applied Physics, 2012, 112, .	1.1	7
105	III-V nanowires for optoelectronic applications. , 2012, , .		0
106	Reduction of gain-saturation in merged beam lasers. , 2012, , .		0
107	InP nanowires grown by SA-MOVPE. , 2012, , .		1

108 Improved GaAs nanowire solar cells using AlGaAs for surface passivation. , 2012, , .

1

#	Article	IF	CITATIONS
109	Optoelectronic properties of GaAs nanowire photodetector. , 2012, , .		Ο
110	Plasmonics for III–V semiconductor solar cells. , 2012, , .		0
111	A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications. Journal Physics D: Applied Physics, 2012, 45, 305102.	1.3	30
112	Improved performance of InGaAs/GaAs quantum dot solar cells using Si-modulation doping. , 2012, , .		1
113	The conduction band absorption spectrum of interdiffused InGaAs/GaAs quantum dot infrared photodetectors. Journal of Applied Physics, 2012, 111, .	1.1	13
114	Dielectric diffraction gratings for light-trapping in InGaAs-GaAs quantum well solar cells. , 2012, , .		0
115	Plasmonic quantum dot solar cells for enhanced infrared response. Applied Physics Letters, 2012, 100, .	1.5	26
116	Water Droplet Motion Control on Superhydrophobic Surfaces: Exploiting the Wenzel-to-Cassie Transition. Langmuir, 2011, 27, 2595-2600.	1.6	118
117	Reply to Comment on Water Droplet Motion Control on Superhydrophobic Surfaces: Exploiting the Wenzel-to-Cassie Transition. Langmuir, 2011, 27, 13962-13963.	1.6	4
118	Plasmonic light trapping effect on properties of InGaAs/GaAs quantum dot solar cells. , 2011, , .		0
119	Merging Photonic Wire Lasers and Nanoantennas. Journal of Lightwave Technology, 2011, 29, 2690-2697.	2.7	13
120	Selective Intermixing of InGaAs/GaAs Quantum Dot Infrared Photodetectors. IEEE Journal of Quantum Electronics, 2011, 47, 577-590.	1.0	7
121	Improved Performance of GaAs-Based Terahertz Emitters via Surface Passivation and Silicon Nitride Encapsulation. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17, 17-21.	1.9	31
122	Investigation of ion implantation induced intermixing in InP based quaternary quantum wells. Journal Physics D: Applied Physics, 2011, 44, 475105.	1.3	6
123	The influence of InGaAs quantum dots on GaAs P-I-N solar cell dark current properties. , 2011, , .		0
124	Temperature dependence of dark current properties of InGaAs/GaAs quantum dot solar cells. Applied Physics Letters, 2011, 98, .	1.5	36
125	Improved performance of GaAs-based terahertz emitters. , 2010, , .		0
126	Increasing the coupling efficiency of a microdisk laser to waveguides by using well designed spiral structures. Journal of Applied Physics, 2010, 107, 043105.	1.1	5

#	Article	lF	CITATIONS
127	Study of intermixing mechanism in AlInGaAs/InGaAs quantum well. , 2010, , .		0
128	Increasing the coupling efficiency of a microdisk laser to waveguides by using spiral structures. , 2010, , .		0
129	Spectral tuning of InGaAs/GaAs quantum dot infrared photodetectors using selective-area intermixing. , 2010, , .		1
130	Spatially resolved characterization of InGaAs/GaAs quantum dot structures by scanning spreading resistance microscopy. Applied Physics Letters, 2010, 97, 041106.	1.5	4
131	Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage. Applied Physics Letters, 2010, 97, .	1.5	54
132	The temperature dependence of InGaAs single-wavelength quantum well and multi-wavelength quantum dot square resonator microlasers. Journal Physics D: Applied Physics, 2010, 43, 135102.	1.3	0
133	Investigations of impurity-free vacancy disordering in (Al)InGaAs(P)/InGaAs quantum wells. Semiconductor Science and Technology, 2010, 25, 055014.	1.0	10
134	Thermal expansion coefficients and composition of sputter-deposited silicon oxynitride thin films. Journal Physics D: Applied Physics, 2010, 43, 335104.	1.3	2
135	Temperature effect on device characteristics of InGaAs/GaAs quantum dot solar cell. , 2010, , .		0
136	Analysis of multi-wavelength photonic crystal single-defect laser arrays. , 2010, , .		0
137	Temperature dependence of dark current properties of In-GaAs/GaAs quantum dot solar cells. , 2010, , .		0
138	High efficiency coupling of light from photonic wire lasers into Nano-antennas. , 2010, , .		0
139	The influence of doping on the device characteristics of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors. Nanoscale, 2010, 2, 1128.	2.8	5
140	Properties of In0.5Ga0.5As/GaAs/Al0.2Ga0.8As quantum-dots-in-a-well infrared photodetectors. Journal Physics D: Applied Physics, 2009, 42, 095101.	1.3	7
141	Effects of annealing on the properties of In _{0.5} Ga _{0.5} As/GaAs/Al _{0.2} Ga _{0.8} As quantum dots-in-a-well infrared photodetectors. Journal Physics D: Applied Physics, 2009, 42, 115103.	1.3	0
142	Coupling Analysis of GaAs-Based Microdisk Lasers With Different External Claddings. Journal of Lightwave Technology, 2009, 27, 5090-5098.	2.7	3
143	Single-mode operation of a large optically pumped triangular laser with lateral air trenches. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 1417.	0.9	8
144	Over 1.0mm-long boron nitride nanotubes. Chemical Physics Letters, 2008, 463, 130-133.	1.2	51

#	Article	IF	CITATIONS
145	Nano Au-decorated boron nitride nanotubes: Conductance modification and field-emission enhancement. Applied Physics Letters, 2008, 92, 243105.	1.5	30
146	Role of stress on impurity free disordering of quantu m dots. Optoelectronic and Microelectronic Materials and Devices (COMMAD), Conference on, 2008, , .	0.0	0
147	Effects of well thickness on the spectral properties of In0.5Ga0.5Asâ^•GaAsâ^•Al0.2Ga0.8As quantum dots-in-a-well infrared photodetectors. Applied Physics Letters, 2008, 92, 193507.	1.5	26
148	Two-color InGaAsâ^•GaAs quantum dot infrared photodetectors by selective area interdiffusion. Applied Physics Letters, 2008, 93, 013504.	1.5	15
149	Comparison of proton and arsenic implantation-induced intermixing in InGaAsP/InGaAs/InP and InAlGaAs/InGaAs/InP quantum wells. , 2008, , .		0
150	Effects of annealing on the spectral response and dark current of quantum dot infrared photodetectors. Journal Physics D: Applied Physics, 2008, 41, 215101.	1.3	6
151	Impurity-free vacancy disordering of quantum heterostructures with SiOxNy encapsulants deposited by magnetron sputtering. , 2008, , .		4
152	Analytical expression for the quantum dot contribution to the quasistatic capacitance for conduction band characterization. Journal of Applied Physics, 2008, 104, 023713.	1.1	1
153	Photoconductive response correction for detectors of terahertz radiation. Journal of Applied Physics, 2008, 104, .	1.1	53
154	Photonic crystal-enhanced quantum dot infrared photodetectors. , 2008, , .		2
155	Influence of SiO2and TiO2dielectric layers on the atomic intermixing of InxGa1â^'xAs/InP quantum well structures. Semiconductor Science and Technology, 2007, 22, 988-992.	1.0	14
156	Effect of GaP strain compensation layers on rapid thermally annealed InGaAsâ^•GaAs quantum dot infrared photodetectors grown by metal-organic chemical-vapor deposition. Applied Physics Letters, 2007, 91, .	1.5	5
157	Spectral behavior of quantum dots-in-a-well infrared photodetectors grown by MOCVD. , 2007, , .		0
158	An ion-implanted InP receiver for polarization resolved terahertz spectroscopy. Optics Express, 2007, 15, 7047.	1.7	46
159	Impurity-free disordering of InAsâ^•InP quantum dots. Applied Physics Letters, 2007, 90, 243114.	1.5	15
160	Influence of quantum well and barrier composition on the spectral behavior of InGaAs quantum dots-in-a-well infrared photodetectors. Applied Physics Letters, 2007, 91, 173508.	1.5	19
161	Multiple Wavelength InGaAs Quantum Dot Lasers Using Ion Implantation Induced Intermixing. Nanoscale Research Letters, 2007, 2, 550-553.	3.1	9
162	Doping effect on dark currents in In0.5Ga0.5Asâ^•GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition. Applied Physics Letters, 2006, 89, 113510.	1.5	29

#	Article	IF	CITATIONS
163	Quantum dots-in-a-well infrared photodetectors grown by MOCVD. , 2006, , .		1
164	Proton irradiation-induced intermixing in InxGa1â^'xAs/InP quantum wells—the effect of In composition. Semiconductor Science and Technology, 2006, 21, 1441-1446.	1.0	5
165	Carrier transfer and magneto-transport in single modulation-doped V-grooved quantum wire modified by ion implantation. Journal of Luminescence, 2006, 119-120, 198-203.	1.5	0
166	Quantum Dots and Nanowires Grown by Metal–Organic Chemical Vapor Deposition for Optoelectronic Device Applications. IEEE Transactions on Energy Conversion, 2006, 12, 1242-1254.	3.7	6
167	Recombination properties of Si-doped InGaAs/GaAs quantum dots. Nanotechnology, 2006, 17, 5373-5377.	1.3	5
168	Micro-Photoluminescence Confocal Mapping of Single V-Grooved GaAs Quantum Wire. Chinese Physics Letters, 2006, 23, 3341-3344.	1.3	0
169	THz Emitters and Detectors Based on Ion Implanted III-V Semiconductors. , 2006, , .		0
170	Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs. Applied Physics Letters, 2006, 89, 232102.	1.5	103
171	Effects of rapid thermal annealing on device characteristics of InGaAsâ^•GaAs quantum dot infrared photodetectors. Journal of Applied Physics, 2006, 99, 114517.	1.1	45
172	Thermal Annealing Study On InGaAs/GaAs Quantum Dot Infrared Photodetectors. , 2006, , .		1
173	Toward quantum-dot-based photonic integrated circuits. , 2005, 5729, 41.		0
174	Study of intermixing in InGaAsâ^•(Al)GaAs quantum well and quantum dot structures for optoelectronicâ°•photonic integration. IET Circuits, Devices and Systems, 2005, 152, 491.	0.6	12
175	Rapid thermal annealing study of InGaAs/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition. , 2005, , .		1
176	Compound semiconductor optoelectronics research at the Australian National University. , 2005, , .		0
177	InGaAs quantum dots-in-a-well photodetectors grown by metal organic chemical vapor deposition. , 2005, , .		0
178	In/sub 0.5/Ga/sub 0.5/As/GaAs quantum dot infrared photodetectors grown by metal-organic chemical vapor deposition. IEEE Electron Device Letters, 2005, 26, 628-630.	2.2	43
179	Effects of thermal stress on interdiffusion in InGaAsN/GaAs quantum dots. Applied Physics Letters, 2004, 84, 4950-4952.	1.5	7
180	Impurity-free vacancy disordering of quantum wells and quantum dots for optoelectronic/photonic integrated circuits. , 2004, , .		0

#	Article	IF	CITATIONS
181	Suppression of thermal atomic interdiffusion in C-doped InGaAsâ^•AlGaAs quantum well laser structures using TiO2 dielectric layers. Applied Physics Letters, 2004, 85, 5583-5585.	1.5	12
182	Suppression of thermal atomic interdiffusion in InGaAs/AlGaAs QW laser structures. , 2004, , .		0
183	Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide. Applied Physics Letters, 2003, 82, 2613-2615.	1.5	57
184	Improvement of the kink-free operation in ridge-waveguide laser diodes due to coupling of the optical field to the metal layers outside the ridge. IEEE Photonics Technology Letters, 2003, 15, 1686-1688.	1.3	33
185	Effects of Zn Doping on Intermixing in InGaAs/AlGaAs Laser Diode Structures. Journal of the Electrochemical Society, 2003, 150, G481.	1.3	10
186	Influence of rapid thermal annealing on a 30 stack InAs/GaAs quantum dot infrared photodetector. Journal of Applied Physics, 2003, 94, 5283.	1.1	37
187	Impurity-free disordering mechanisms in GaAs-based structures using doped spin-on silica layers. Applied Physics Letters, 2002, 80, 4351-4353.	1.5	14
188	Suppression of interdiffusion in GaAs/AlGaAs quantum-well structure capped with dielectric films by deposition of gallium oxide. Journal of Applied Physics, 2002, 92, 3579-3583.	1.1	35
189	Study of intermixing in a GaAs/AlGaAs quantum-well structure using doped spin-on silica layers. Applied Physics Letters, 2002, 80, 1171-1173.	1.5	16
190	<title>Use of ion implantation for the creation of ultrafast photodetector materials and tuning of quantum well infrared photodetectors</title> . , 2001, , .		0
191	Tuning of detection wavelength of quantum-well infrared photodetectors by quantum-well intermixing. Infrared Physics and Technology, 2001, 42, 171-175.	1.3	6
192	Possibility of improved frequency response from intermixed quantum-well devices. Superlattices and Microstructures, 2001, 29, 105-110.	1.4	0
193	The asymmetry in the characteristics of GaAs/AlGaAs quantum well infrared photodetectors. Journal of Crystal Growth, 2001, 222, 786-790.	0.7	3
194	Tuning the detection wavelength of quantum-well infrared photodetectors by single high-energy implantation. Applied Physics Letters, 2001, 78, 10-12.	1.5	18
195	Intermixing effect in quantum well infrared detector. , 2000, 4130, 348.		0
196	Quality of silica capping layer and its influence on quantum-well intermixing. Applied Physics Letters, 2000, 76, 837-839.	1.5	23
197	Interdiffused quantum-well infrared photodetectors for color sensitive arrays. Applied Physics Letters, 1999, 75, 923-925.	1.5	20
198	Proton irradiation-induced intermixing in InGaAs/(Al)GaAs quantum wells and quantum-well lasers. Journal of Applied Physics, 1999, 85, 6786-6789.	1,1	29

#	Article	IF	CITATIONS
199	Proton implantation and rapid thermal annealing effects on GaAs/AlGaAs quantum well infrared photodetectors. Superlattices and Microstructures, 1999, 26, 317-324.	1.4	12
200	Improved carrier collection in intermixed InGaAs/GaAs quantum wells. Applied Physics Letters, 1998, 73, 3408-3410.	1.5	26
201	Multiple energy proton implantation induced quantum well intermixing in GaAs/AlGaAs quantum-well infrared photodetectors. , 0, , .		0
202	Effect of dopants in the spin-on glass layer on the bandgap shift in GaAs/AlGaAs and InGaAs/AlGaAs intermixed quantum wells. , 0, , .		1
203	Thermoluminescence in GaAs. , 0, , .		0
204	Postgrowth wavelength tuning of optoelectronic devices by ion implantation induced quantum well intermixing. , 0, , .		0
205	High power, kink-free 970 nm InGaAs/AlGaAs laser diodes with asymmetric structure. , 0, , .		0
206	Suppression of interdiffusion in In/sub 0.5/Ga/sub 0.5/As/GaAs quantum dots. , 0, , .		0
207	Strain relaxation in rapid thermally annealed InAs/GaAs quantum dot infrared photodetectors. , 0, , .		0
208	Improvement of kink-free operation in InGaAs/GaAs/AlGaAs high power, ridge waveguide laser diodes. , 0, , .		0
209	Quantum well intermixing for optoelectronic device integration. , 0, , .		1
210	Comparison of interdiffusion between single and stacked-layer InGaAs/GaAs quantum dots. , 0, , .		2
211	The use of strain compensation layers in the growth of stacked quantum dot structures. , 0, , .		3
212	Spatial selectivity of impurity free vacancy disordering using different dielectric layers for photonic/optoelectronic integrated circuits. , 0, , .		0
213	Multi-bandgap solar cells: opportunities and challenges. SPIE Newsroom, 0, , .	0.1	0
214	MOCVD Grown Quantum Dot-in-a-Well Solar Cells. Key Engineering Materials, 0, 442, 398-403.	0.4	0
215	Nanowire solar cells for next-generation photovoltaics. SPIE Newsroom, 0, , .	0.1	4