Jin-Seong Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735918/publications.pdf Version: 2024-02-01

IN-SEONC PARK

#	Article	IF	CITATIONS
1	Delamination of Graphene/ZnO interlayer driven by photocatalytic effect for flexible a-IGZO TFT applications. Applied Surface Science, 2022, 571, 151358.	6.1	3
2	Highly Efficient Bifacial Colorâ€īunable Perovskite Solar Cells. Advanced Optical Materials, 2022, 10, 2101696.	7.3	7
3	Facile synthesis of an organic/inorganic hybrid 2D structure tincone film by molecular layer deposition. Dalton Transactions, 2022, 51, 1829-1837.	3.3	3
4	Impact of Annealing Temperature on Atomic Layer Deposited In–Ga–Zn–O Thin-Film Transistors. ACS Applied Electronic Materials, 2022, 4, 1343-1350.	4.3	10
5	Atmospheric pressure spatial ALD of Al2O3 thin films for flexible PEALD IGZO TFT application. Ceramics International, 2022, 48, 18803-18810.	4.8	13
6	Plasma-enhanced atomic layer deposition of aluminum-indium oxide thin films and associated device applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 032402.	2.1	3
7	Impact of N ₂ 0 Plasma Reactant on PEALD-SiO ₂ Insulator for Remarkably Reliable ALD-Oxide Semiconductor TFTs. IEEE Transactions on Electron Devices, 2022, 69, 3199-3205.	3.0	6
8	Plasma-enhanced atomic-layer deposition of active layers of nanolaminated (InO _{<i>x</i>}) _n (GaZnO _{<i>y</i>}) _m for thin-film transistors. Journal of Materials Chemistry C, 2022, 10, 7831-7838.	5.5	4
9	Remarkable Stability Improvement with a Highâ€Performance PEALDâ€IZO/IGZO Topâ€Gate Thinâ€Film Transistor via Modulating Dualâ€Channel Effects. Advanced Materials Interfaces, 2022, 9, .	3.7	16
10	Structural, Optical, and Electrical Properties of InO _{<i>x</i>} Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition for Flexible Device Applications. ACS Applied Electronic Materials, 2022, 4, 3010-3017.	4.3	15
11	Plasma-enhanced atomic-layer-deposited indium oxide thin film using a DMION precursor within a wide process window. Ceramics International, 2022, 48, 27807-27814.	4.8	12
12	Pâ€3: High Temperature Annealing Behavior of IGZO Using Plasma Enhanced Atomic Layer Deposition. Digest of Technical Papers SID International Symposium, 2022, 53, 1047-1050.	0.3	0
13	5â€3: A Random Access Gate Driver Using aâ€ŀGZO TFTs for External Compensation of Highâ€Resolution, Highâ€Frameâ€Rate AMOLEDs. Digest of Technical Papers SID International Symposium, 2022, 53, 32-35.	0.3	0
14	Pâ€2: Nitrogen Behaviors in PEALDâ€Grown SiO ₂ Films Using N ₂ O Plasma Reactant and Its Application in ALDâ€IZO TFTs. Digest of Technical Papers SID International Symposium, 2022, 53, 1043-1046.	0.3	0
15	Enhanced performance and stability in InGaZnO NIR phototransistors with alumina-infilled quantum dot solid. Scientific Reports, 2022, 12, .	3.3	3
16	Plasma Enhanced atomic layer deposited amorphous gallium oxide thin films using novel trimethyl[N-(2-methoxyethyl)-2-methylpropan-2-amine]gallium. Ceramics International, 2021, 47, 1588-1593.	4.8	5
17	Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor. Nano Energy, 2021, 80, 105518.	16.0	19
18	An organic–inorganic hybrid semiconductor for flexible thin film transistors using molecular layer deposition. Journal of Materials Chemistry C, 2021, 9, 4322-4329.	5.5	12

#	Article	IF	CITATIONS
19	Effects of Tensile Strain on Dynamic and Static Inverters Using Amorphous Indium-Gallium-Zinc-Oxide TFTs. IEEE Electron Device Letters, 2021, 42, 359-362.	3.9	2
20	Highly efficient and stable flexible perovskite solar cells enabled by using plasma-polymerized-fluorocarbon antireflection layer. Nano Energy, 2021, 82, 105737.	16.0	46
21	Low Subthreshold Swing and High Performance of Ultrathin PEALD InGaZnO Thin-Film Transistors. IEEE Transactions on Electron Devices, 2021, 68, 1670-1675.	3.0	20
22	Reduction of Persistent Photoconduction with IGZO/ZnON-Tandem-Structure Visible–Near-Infrared Phototransistors. ACS Applied Materials & Interfaces, 2021, 13, 17827-17834.	8.0	7
23	Extremely high photoconductivity ultraviolet-light sensor using amorphous In–Ga–Zn–O thin-film-transistor. Journal of the Korean Physical Society, 2021, 78, 1221-1226.	0.7	3
24	Plasma-enhanced atomic layer deposited indium oxide film using a novel dimethylbutylamino-trimethylindium precursor for thin film transistors. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	9
25	Undoped tin dioxide transparent electrodes for efficient and cost-effective indoor organic photovoltaics (SnO2 electrode for indoor organic photovoltaics). NPG Asia Materials, 2021, 13, .	7.9	36
26	Area-Selective Atomic Layer Deposition of Ruthenium Using a Novel Ru Precursor and H ₂ O as a Reactant. Chemistry of Materials, 2021, 33, 4353-4361.	6.7	17
27	Significance of Pairing In/Ga Precursor Structures on PEALD InGaO _{<i>x</i>} Thin-Film Transistor. ACS Applied Materials & Interfaces, 2021, 13, 28493-28502.	8.0	18
28	Highly Dense and Stable p-Type Thin-Film Transistor Based on Atomic Layer Deposition SnO Fabricated by Two-Step Crystallization. ACS Applied Materials & Interfaces, 2021, 13, 30818-30825.	8.0	28
29	Facile and Stable n ⁺ Doping Process Via Simultaneous Ultraviolet and Thermal Energy for Coplanar ALD-IGZO Thin-Film Transistors. ACS Applied Electronic Materials, 2021, 3, 3530-3537.	4.3	11
30	Atomic layer chemical vapor deposition of SiO2 thin films using a chlorine-free silicon precursor for 3D NAND applications. Ceramics International, 2021, 47, 19036-19042.	4.8	9
31	Atomic-Layer-Deposited SiO <i>_x</i> /SnO <i>_x</i> Nanolaminate Structure for Moisture and Hydrogen Gas Diffusion Barriers. ACS Applied Materials & Interfaces, 2021, 13, 39584-39594.	8.0	7
32	A study on the growth mechanism and gas diffusion barrier property of homogeneously mixed silicon–tin oxide by atomic layer deposition. Ceramics International, 2021, 47, 34774-34782.	4.8	3
33	Plasma-enhanced atomic layer deposited HfO2 films using a novel heteroleptic cyclopentadienyl-based Hf precursor. Ceramics International, 2021, 47, 29030-29035.	4.8	7
34	Facile rearrangement of molecular layer deposited metalcone thin films by electron beam irradiation for area selective atomic layer deposition. Dalton Transactions, 2021, 50, 9958-9967.	3.3	6
35	Water vapor and hydrogen gas diffusion barrier characteristics of Al ₂ O ₃ –alucone multi-layer structures for flexible OLED display applications. Dalton Transactions, 2021, 50, 15841-15848.	3.3	6
36	The Significance on Structural Modulation of Buffer and Gate Insulator for ALD Based InGaZnO TFT Applications. IEEE Transactions on Electron Devices, 2021, 68, 6147-6153.	3.0	7

#	Article	IF	CITATIONS
37	High Field-Effect Mobility Two-Channel InGaZnO Thin-Film Transistors for Low-Voltage Operation. IEEE Transactions on Electron Devices, 2021, 68, 6166-6170.	3.0	1
38	Mechanical Durability of Flexible/Stretchable a-IGZO TFTs on PI Island for Wearable Electronic Application. ACS Applied Electronic Materials, 2021, 3, 5037-5047.	4.3	17
39	Dry-Etchable Molecular Layer-Deposited Inhibitor Using Annealed Indicone Film for Nanoscale Area-Selective Deposition. ACS Applied Materials & Interfaces, 2021, 13, 60144-60153.	8.0	6
40	Transparent Flexible High Mobility TFTs Based on ZnON Semiconductor With Dual Gate Structure. IEEE Electron Device Letters, 2020, 41, 401-404.	3.9	18
41	Organic/Inorganic Hybrid Buffer in InGaZnO Transistors under Repetitive Bending Stress for High Electrical and Mechanical Stability. ACS Applied Materials & Interfaces, 2020, 12, 3784-3791.	8.0	15
42	Impact of tandem IGZO/ZnON TFT with energy-band aligned structure. Applied Physics Letters, 2020, 117, 143505.	3.3	20
43	Metastable Rhombohedral Phase Transition of Semiconducting Indium Oxide Controlled by Thermal Atomic Layer Deposition. Chemistry of Materials, 2020, 32, 7397-7403.	6.7	33
44	Selective Nonenzymatic Amperometric Detection of Lactic Acid in Human Sweat Utilizing a Multi-Walled Carbon Nanotube (MWCNT)-Polypyrrole Core-Shell Nanowire. Biosensors, 2020, 10, 111.	4.7	23
45	Nanoscale surface engineering of a high- <i>k</i> ZrO ₂ /SiO ₂ gate insulator for a high performance ITZO TFT <i>via</i> plasma-enhanced atomic layer deposition. Journal of Materials Chemistry C, 2020, 8, 13342-13348.	5.5	9
46	Thermal Annealing of Molecular Layer-Deposited Indicone Toward Area-Selective Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2020, 12, 43212-43221.	8.0	11
47	Hydrogen Impacts of PEALD InGaZnO TFTs Using SiO _x Gate Insulators Deposited by PECVD and PEALD. IEEE Transactions on Electron Devices, 2020, 67, 4250-4255.	3.0	32
48	Plasma-Polymer-Fluorocarbon Thin Film Coated Nanostructured-Polyethylene Terephthalate Surface with Highly Durable Superhydrophobic and Antireflective Properties. Polymers, 2020, 12, 1026.	4.5	11
49	A bow-free freestanding GaN wafer. RSC Advances, 2020, 10, 21860-21866.	3.6	1
50	Study on efficiency improvement of multi-crystalline silicon solar cell by removing by-product and plasma induced damage generated during reactive ion etching. Current Applied Physics, 2020, 20, 519-524.	2.4	5
51	Investigating the interface characteristics of high-k ZrO2/SiO2 stacked gate insulator grown by plasma-enhanced atomic layer deposition for improving the performance of InSnZnO thin film transistors. AIP Advances, 2020, 10, .	1.3	4
52	Soft Recovery Process of Mechanically Degraded Flexible a-IGZO TFTs With Various Rolling Stresses and Defect Simulation Using TCAD Simulation. IEEE Transactions on Electron Devices, 2020, 67, 535-541.	3.0	17
53	Molecular layer deposition of indicone and organic-inorganic hybrid thin films as flexible transparent conductor. Applied Surface Science, 2020, 525, 146383.	6.1	16
54	Air-stable alucone thin films deposited by molecular layer deposition using a 4-mercaptophenol organic reactant. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 022411.	2.1	9

#	Article	IF	CITATIONS
55	Recent review on improving mechanical durability for flexible oxide thin film transistors. Journal Physics D: Applied Physics, 2019, 52, 483002.	2.8	8
56	Electrical Stability Analysis of Dynamic Logic Using Amorphous Indium–Gallium–Zinc-Oxide TFTs. IEEE Electron Device Letters, 2019, 40, 1128-1131.	3.9	8
57	Plasma enhanced atomic layer deposited silicon dioxide with divalent Si precursor [N,N′-tert-butyl-1,1-dimethylethylenediamine silylene]. Applied Surface Science, 2019, 493, 125-130.	6.1	2
58	Ultra-High-Speed Intense Pulsed-Light Irradiation Technique for High-Performance Zinc Oxynitride Thin-Film Transistors. ACS Applied Materials & Interfaces, 2019, 11, 4152-4158.	8.0	18
59	Amorphous IGZO TFT with High Mobility of â^¼70 cm ² /(V s) via Vertical Dimension Control Using PEALD. ACS Applied Materials & Interfaces, 2019, 11, 40300-40309.	8.0	188
60	Cross-plane thermoelectric Seebeck coefficients in nanoscale Al2O3/ZnO superlattice films. Journal of Materials Chemistry C, 2019, 7, 1670-1680.	5.5	11
61	The impact of plasma-enhanced atomic layer deposited ZrSiOx insulators on low voltage operated In-Sn-Zn-O thin film transistors. Ceramics International, 2019, 45, 19166-19172.	4.8	19
62	Super-hydrophobic and antimicrobial properties of Ag-PPFC nanocomposite thin films fabricated using a ternary carbon nanotube-Ag-PTFE composite sputtering target. Surface and Coatings Technology, 2019, 370, 18-23.	4.8	35
63	Design of InZnSnO Semiconductor Alloys Synthesized by Supercycle Atomic Layer Deposition and Their Rollable Applications. ACS Applied Materials & Interfaces, 2019, 11, 12683-12692.	8.0	49
64	Efficiency characteristics of a silicon oxide passivation layer on p-type crystalline silicon solar cell at low illumination. Current Applied Physics, 2019, 19, 683-689.	2.4	13
65	Effects of porosity and particle size on the gas sensing properties of SnO2 films. Applied Surface Science, 2019, 481, 133-137.	6.1	57
66	Rapid gas-induced detachable rGO/MnO debonding layer for flexible electronic applications. Carbon, 2019, 146, 756-762.	10.3	3
67	Quantitative analysis of interface trap recovery caused by repetitive bending stress in flexible oxide thin-film transistors. Japanese Journal of Applied Physics, 2019, 58, 050906.	1.5	8
68	Improved performance and stability of In-Sn-Zn-O thin film transistor by introducing a meso-crystalline ZrO2 high-k gate insulator. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	20
69	Optimization of a SiOx/SiNxOyCz multilayer structure for a reliable gas diffusion barrier via low-temperature plasma-enhanced atomic layer deposition. Ceramics International, 2019, 45, 7407-7412.	4.8	5
70	Phase-controlled SnO2 and SnO growth by atomic layer deposition using Bis(N-ethoxy-2,2-dimethyl) Tj ETQq0 () 0 rgBT /O	verlock 10 Tf

71	Review of Organic/Inorganic Thin Film Encapsulation by Atomic Layer Deposition for a Flexible OLED Display. Jom, 2019, 71, 197-211.	1.9	68
72	Supreme performance of zinc oxynitride thin film transistors <i>via</i> systematic control of the photo-thermal activation process. Journal of Materials Chemistry C, 2018, 6, 5171-5175.	5.5	18

#	Article	IF	CITATIONS
73	The impact of carrier gas on the physical and electrical properties of indium oxide layers grown by mist-CVD. Ceramics International, 2018, 44, 6968-6972.	4.8	7
74	Rational design of protective In2O3 layer-coated carbon nanopaper membrane: Toward stable cathode for long-cycle Li-O2 batteries. Nano Energy, 2018, 46, 193-202.	16.0	58
75	Effects of helium concentration on microcrystalline silicon thin film solar cells deposited by atmospheric-pressure plasma deposition at 13.3†kPa. Thin Solid Films, 2018, 650, 32-36.	1.8	5
76	Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes. Journal of Semiconductors, 2018, 39, 011008.	3.7	48
77	Photothermally Activated Nanocrystalline Oxynitride with Superior Performance in Flexible Field-Effect Transistors. ACS Applied Materials & Interfaces, 2018, 10, 2709-2715.	8.0	13
78	Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer. Advanced Science, 2018, 5, 1800130.	11.2	120
79	The effect of solvent water content on the dielectric properties of Al2O3 films grown by atmospheric pressure mist-CVD. Ceramics International, 2018, 44, 459-463.	4.8	14
80	Long-term air-stable Au doping of graphene by layer-by-layer assembly with graphene oxide for flexible transparent electrodes. Carbon, 2018, 126, 241-246.	10.3	20
81	A study on the thermoelectric properties of ALD-grown aluminum-doped tin oxide with respect to nanostructure modulations. Ceramics International, 2018, 44, 1978-1983.	4.8	14
82	Undoped ZnO electrodes for low-cost indoor organic photovoltaics. Journal of Materials Chemistry A, 2018, 6, 23464-23472.	10.3	38
83	Direct Probing of Cross-Plane Thermal Properties of Atomic Layer Deposition Al ₂ O ₃ /ZnO Superlattice Films with an Improved Figure of Merit and Their Cross-Plane Thermoelectric Generating Performance. ACS Applied Materials & amp; Interfaces, 2018, 10,	8.0	14
84	Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: Advances in research and development. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, .	2.1	82
85	Selective SnO _{<i>x</i>} Atomic Layer Deposition Driven by Oxygen Reactants. ACS Applied Materials & Interfaces, 2018, 10, 33335-33342.	8.0	28
86	The pretreatment of granular activated carbon using sodium persulfate and hydrogen peroxide under basic conditions: Properties, metal impregnation, and As(V) adsorption. Materials Chemistry and Physics, 2018, 218, 317-325.	4.0	4
87	Facile fabrication of p-type Al2O3/carbon nanocomposite films using molecular layer deposition. Applied Surface Science, 2018, 458, 864-871.	6.1	21
88	Semiconductor behavior of Li doped ZnSnO thin film grown by mist-CVD and the associated device property. Journal of Alloys and Compounds, 2018, 762, 881-886.	5.5	10
89	Comparative Study on Hydrogen Behavior in InGaZnO Thin Film Transistors with a SiO2/SiNx/SiO2 Buffer on Polyimide and Glass Substrates. Electronic Materials Letters, 2018, 14, 749-754.	2.2	10
90	Chemistry of SiNx thin film deposited by plasma-enhanced atomic layer deposition using di-isopropylaminosilane (DIPAS) and N2 plasma. Ceramics International, 2018, 44, 20890-20895.	4.8	9

#	Article	IF	CITATIONS
91	Near-Infrared Photoresponsivity of ZnON Thin-Film Transistor with Energy Band-Tunable Semiconductor. ACS Applied Materials & Interfaces, 2018, 10, 30541-30547.	8.0	16
92	Effects of Repetitive Mechanical Stress on Flexible Oxide Thin-Film Transistors and Stress Reduction via Additional Organic Layer. IEEE Electron Device Letters, 2018, 39, 971-974.	3.9	24
93	A High-Reliability Carry-Free Gate Driver for Flexible Displays Using a-IGZO TFTs. IEEE Transactions on Electron Devices, 2018, 65, 3269-3276.	3.0	18
94	Electrochemical Corrosion and Hydrogen Diffusion Behaviors of Zn and Al Coated Hot-Press Forming Steel Sheets in Chloride Containing Environments. Korean Journal of Materials Research, 2018, 28, 286-294.	0.2	4
95	Compositional and electrical modulation of niobium oxide thin films deposited by plasma-enhanced atomic layer deposition. Ceramics International, 2017, 43, 6580-6584.	4.8	13
96	Anisotropic temperature-dependent thermal conductivity by an Al ₂ O ₃ interlayer in Al ₂ O ₃ /ZnO superlattice films. Nanotechnology, 2017, 28, 105401.	2.6	12
97	Facile synthesis of AlO x dielectrics via mist-CVD based on aqueous solutions. Ceramics International, 2017, 43, 8932-8937.	4.8	9
98	Silicon oxide film deposited at room temperatures using high-working-pressure plasma-enhanced chemical vapor deposition: Effect of O2 flow rate. Ceramics International, 2017, 43, 10628-10631.	4.8	3
99	Atomic Layer Deposition of an Indium Gallium Oxide Thin Film for Thin-Film Transistor Applications. ACS Applied Materials & Interfaces, 2017, 9, 23934-23940.	8.0	97
100	High-Performance Zinc Tin Oxide Semiconductor Grown by Atmospheric-Pressure Mist-CVD and the Associated Thin-Film Transistor Properties. ACS Applied Materials & Interfaces, 2017, 9, 20656-20663.	8.0	23
101	Low temperature SiOx thin film deposited by plasma enhanced atomic layer deposition for thin film encapsulation applications. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	26
102	Effect of mechanical stress on the stability of flexible InGaZnO thin-film transistors. Journal of Information Display, 2017, 18, 87-91.	4.0	30
103	Control of phonon transport by the formation of the Al ₂ O ₃ interlayer in Al ₂ O ₃ –ZnO superlattice thin films and their in-plane thermoelectric energy generator performance. Nanoscale, 2017, 9, 7027-7036.	5.6	40
104	Reduction of persistent photoconduction in Ge-Ga-In-O semiconductors by the incorporation of nitrogen. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, 021202.	1.2	4
105	Studies of thermoelectric transport properties of atomic layer deposited gallium-doped ZnO. Ceramics International, 2017, 43, 7784-7788.	4.8	27
106	Low temperature atomic layer deposition of SiO2 thin films using di-isopropylaminosilane and ozone. Ceramics International, 2017, 43, 2095-2099.	4.8	47
107	Three-dimensionally stacked Al2O3/graphene oxide for gas barrier applications. Carbon, 2017, 125, 464-471.	10.3	21
108	Review of recent advances in flexible oxide semiconductor thin-film transistors. Journal of Information Display, 2017, 18, 159-172.	4.0	97

#	Article	IF	CITATIONS
109	Dynamic Logic Circuits Using a-IGZO TFTs. IEEE Transactions on Electron Devices, 2017, 64, 4123-4130.	3.0	22
110	Effect of hydrogen on the device performance and stability characteristics of amorphous InGaZnO thin-film transistors with a SiO2/SiNx/SiO2 buffer. Applied Physics Letters, 2017, 111, .	3.3	34
111	Performance and Stability Enhancement of In–Sn–Zn–O TFTs Using SiO ₂ Gate Dielectrics Grown by Low Temperature Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2017, 9, 42928-42934.	8.0	50
112	The resonant interaction between anions or vacancies in ZnON semiconductors and their effects on thin film device properties. Scientific Reports, 2017, 7, 2111.	3.3	21
113	Enhanced charge collection with passivation of the tin oxide layer in planar perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 12729-12734.	10.3	103
114	All In-Plane Thermoelectric Properties of Atomic Layer Deposition-Grown Al ₂ O ₃ /ZnO Superlattice Film in the Temperature Range from 300 to 500 K. Science of Advanced Materials, 2017, 9, 1296-1301.	0.7	3
115	Anti-reflective conducting indium oxide layer on nanostructured substrate as a function of aspect ratio. Applied Physics Letters, 2016, 109, 121604.	3.3	1
116	The effect of ITO and Mo electrodes on the properties and stability of In-Ga-Zn-O thin film transistors. Journal of Electroceramics, 2016, 36, 129-134.	2.0	9
117	Boosting Responsivity of Organic–Metal Oxynitride Hybrid Heterointerface Phototransistor. ACS Applied Materials & Interfaces, 2016, 8, 14665-14670.	8.0	25
118	Atomic layer deposition of indium oxide thin film from a liquid indium complex containing 1-dimethylamino-2-methyl-2-propoxy ligands. Applied Surface Science, 2016, 383, 1-8.	6.1	19
119	Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(<i>N</i> -ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application. ACS Applied Materials & Interfaces, 2016, 8, 26924-26931.	8.0	59
120	Photomodulation of InGaZnO thin film transistors with interfacial silver nanoparticles. Japanese Journal of Applied Physics, 2016, 55, 111101.	1.5	2
121	Enhancing the thermoelectric properties of super-lattice Al2O3/ZnO atomic film via interface confinement. Ceramics International, 2016, 42, 14411-14415.	4.8	32
122	Photoresponses of InSnGaO and InGaZnO thin-film transistors. RSC Advances, 2016, 6, 83529-83533.	3.6	7
123	Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2016, 8, 33821-33828.	8.0	124
124	Control of valley degeneracy in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Mo</mml:mi> <mml:msub> <mml:n mathvariant="normal">S <mml:mn>2</mml:mn> </mml:n </mml:msub> </mml:mrow> by layer thickness and electric field and its effect on thermoelectric properties. Physical Review B, 2016,</mml:math 	ni 3.2	68
125	P3, . Performance modulation of transparent ALD indium oxide films on flexible substrates: transition between metal-like conductor and high performance semiconductor states. Journal of Materials Chemistry C, 2016, 4, 7571-7576.	5.5	43
126	A Study on the Electrical Properties of Atomic Layer Deposition Grown InO _{<i>x</i>} on Flexible Substrates with Respect to N ₂ O Plasma Treatment and the Associated Thin-Film Transistor Behavior under Repetitive Mechanical Stress. ACS Applied Materials & amp; Interfaces, 2016, 8, 31136-31143.	8.0	62

#	Article	IF	CITATIONS
127	Enhancement of In-Sn-Ga-O TFT performance by the synergistic combination of UVÂ+ÂO3 radiation and low temperature annealing. Journal of Electroceramics, 2016, 37, 158-162.	2.0	17
128	A study on the electron transport properties of ZnON semiconductors with respect to the relative anion content. Scientific Reports, 2016, 6, 24787.	3.3	38
129	A Study on the Growth Behavior and Stability of Molecular Layer Deposited Alucone Films Using Diethylene Glycol and Trimethyl Aluminum Precursors, and the Enhancement of Diffusion Barrier Properties by Atomic Layer Deposited Al ₂ O ₃ Capping. ACS Applied Materials &: Interfaces. 2016. 8. 12263-12271.	8.0	36
130	Plasma-enhanced atomic layer deposition of tantalum nitride thin films using tertiary-amylimido-tris(dimethylamido)tantalum and hydrogen plasma. Journal of Electroceramics, 2016, 36, 165-169.	2.0	7
131	Growth of tantalum nitride film as a Cu diffusion barrier by plasma-enhanced atomic layer deposition from bis((2-(dimethylamino)ethyl)(methyl)amido)methyl(tert-butylimido)tantalum complex. Applied Surface Science, 2016, 362, 176-181.	6.1	16
132	A morphology, porosity and surface conductive layer optimized MnCo ₂ O ₄ microsphere for compatible superior Li ⁺ ion/air rechargeable battery electrode materials. Dalton Transactions, 2016, 45, 5064-5070.	3.3	17
133	Atomic layer deposited p-type copper oxide thin films and the associated thin film transistor properties. Ceramics International, 2016, 42, 5517-5522.	4.8	55
134	AOS TFTs for AMOLED TV. , 2016, , 997-1015.		1
135	Antireflective conducting nanostructures with an atomic layer deposited an AlZnO layer on a transparent substrate. Applied Surface Science, 2015, 357, 2385-2390.	6.1	5
136	Stability Improvement of In-Sn-Ga-O Thin-Film Transistors at Low Annealing Temperatures. IEEE Electron Device Letters, 2015, 36, 1160-1162.	3.9	43
137	Visible-light phototransistors based on InGaZnO and silver nanoparticles. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	1.2	19
138	Plasmon-enhanced photocurrent of Ge-doped InGaO thin film transistors using silver nanoparticles. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	14
139	Pâ€10: Comparative Studies of ZnON and ZnO Thin Film Transistors Fabricated by DC Reactive Sputtering Method. Digest of Technical Papers SID International Symposium, 2015, 46, 1155-1157.	0.3	0
140	Morphology Effect on Enhanced Li ⁺ -lon Storage Performance for Ni ^{2+/3+} and/or Co ^{2+/3+} Doped LiMnPO ₄ Cathode Nanoparticles. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	4
141	Low temperature processed InGaZnO oxide thin film transistor using ultra-violet irradiation. Electronic Materials Letters, 2015, 11, 360-365.	2.2	12
142	Effect of Alumina Buffers on the Stability of Top-Gate Amorphous InGaZnO Thin-Film Transistors on Flexible Substrates. IEEE Electron Device Letters, 2015, 36, 917-919.	3.9	41
143	Highly Stable ZnON Thin-Film Transistors With High Field-Effect Mobility Exceeding 50 <inline-formula> <tex-math notation="LaTeX">\$mathrm{cm}^{2}\$ </tex-math></inline-formula> /Vs. IEEE Electron Device Letters, 2015, 36, 38-40.	3.9	45
144	Temperature variable luminescence and color tuning of Eu ²⁺ /Mn ²⁺ -codoped strontium magnesium phosphates as promising red-emitting phosphors for light emitting diodes. Dalton Transactions, 2015, 44, 338-344.	3.3	9

#	Article	IF	CITATIONS
145	Ambient atmosphere-processable, printable Cu electrodes for flexible device applications: structural welding on a millisecond timescale of surface oxide-free Cu nanoparticles. Nanoscale, 2015, 7, 3997-4004.	5.6	42
146	Atomic layer deposition of highly conductive indium oxide using a liquid precursor and water oxidant. Ceramics International, 2015, 41, 10782-10787.	4.8	47
147	Facile Route to the Controlled Synthesis of Tetragonal and Orthorhombic SnO ₂ Films by Mist Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2015, 7, 12074-12079.	8.0	43
148	Indium oxide thin film prepared by low temperature atomic layer deposition using liquid precursors and ozone oxidant. Journal of Alloys and Compounds, 2015, 649, 216-221.	5.5	51
149	Enhanced photocurrent of Ge-doped InGaO thin film transistors with quantum dots. Applied Physics Letters, 2015, 106, .	3.3	22
150	A review on the recent developments of solution processes for oxide thin film transistors. Semiconductor Science and Technology, 2015, 30, 064001.	2.0	83
151	Comparative studies on the physical and electronic properties of reactively sputtered ZnO and ZnON semiconductors. Ceramics International, 2015, 41, 13281-13284.	4.8	29
152	Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots. ACS Applied Materials & Interfaces, 2015, 7, 19666-19671.	8.0	80
153	The effect of nitrogen incorporation in Ge–In–Ga–O semiconductor and the associated thin film transistors. Applied Surface Science, 2015, 355, 1267-1271.	6.1	9
154	Low-cost and flexible ultra-thin silicon solar cell implemented with energy-down-shift via Cd _{0.5} Zn _{0.5} S/ZnS core/shell quantum dots. Journal of Materials Chemistry A, 2015, 3, 481-487.	10.3	16
155	Versatile hole injection of VO2: Energy level alignment at N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine/VO2/fluorine-doped tin oxide. Organic Electronics, 2015, 16, 133-138.	2.6	10
156	The origin of evolutionary device performance for GeGalnOx thin film transistor as a function of process pressure. Journal of Electroceramics, 2015, 34, 229-235.	2.0	2
157	Electronic structure of conducting Al-doped ZnO films as a function of Al doping concentration. Ceramics International, 2015, 41, 1641-1645.	4.8	35
158	The growth behavior and properties of atomic layer deposited zinc oxide films using hydrogen peroxide (H2O2) and ozone (O3) oxidants. Ceramics International, 2015, 41, 1839-1845.	4.8	15
159	AOS TFTs for AMOLED TV. , 2015, , 1-19.		0
160	Characterization of microcrystalline silicon thin film solar cells prepared by high working pressure plasma-enhanced chemical vapor deposition. Journal of Electroceramics, 2014, 33, 149-154.	2.0	5
161	Origin of electrical improvement of amorphous TalnZnO TFT by oxygen thermo-pressure-induced process. Journal Physics D: Applied Physics, 2014, 47, 105104.	2.8	12
162	Effect of processing temperature on the structural, electronic and electrical properties of solution-processed amorphous Ge–In–Sn–O thin-film transistors. Journal Physics D: Applied Physics, 2014, 47, 085103.	2.8	1

#	Article	IF	CITATIONS
163	The Influence of Oxygen High-Pressure Annealing on the Performance and Bias Instability of Amorphous Ge–In–Ga–O Thin-Film Transistors. IEEE Transactions on Electron Devices, 2014, 61, 4132-4136.	3.0	6
164	The effect of the annealing temperature on the transition from conductor to semiconductor behavior in zinc tin oxide deposited atomic layer deposition. Applied Physics Letters, 2014, 105, .	3.3	35
165	Semiconducting properties of amorphous GaZnSnO thin film based on combinatorial electronic structures. Applied Physics Letters, 2014, 104, 182106.	3.3	18
166	Improvement of Negative Bias Temperature Illumination Stability of Amorphous IGZO Thin-Film Transistors by Water Vapor-Assisted High-Pressure Oxygen Annealing. ECS Journal of Solid State Science and Technology, 2014, 3, Q95-Q98.	1.8	23
167	Effect of Al concentration on the electrical characteristics of solution-processed Al doped ZnSnO thin film transistors. Ceramics International, 2014, 40, 8769-8774.	4.8	46
168	The performance and negative bias illumination stability of Hf-In-Zn-O thin film transistors on sputtering conditions. Journal of Electroceramics, 2014, 32, 220-223.	2.0	5
169	Multifunctional Ru-AlN heating resistor films for high efficiency inkjet printhead. Journal of Electroceramics, 2014, 32, 240-245.	2.0	1
170	Parabolic behavior of solution processed ZnSnO device performances depending on Zn/Sn ratios. Journal of Electroceramics, 2014, 32, 319-323.	2.0	7
171	Overview of electroceramic materials for oxide semiconductor thin film transistors. Journal of Electroceramics, 2014, 32, 117-140.	2.0	117
172	The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Applied Physics Letters, 2014, 104, .	3.3	69
173	Enhanced mobility of Li-doped ZnO thin film transistors fabricated by mist chemical vapor deposition. Applied Surface Science, 2014, 301, 358-362.	6.1	41
174	Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature. Applied Physics Letters, 2014, 105, .	3.3	38
175	Formamide Mediated, Air-Brush Printable, Indium-Free Soluble Zn–Sn–O Semiconductors for Thin-Film Transistor Applications. ACS Applied Materials & Interfaces, 2014, 6, 18429-18434.	8.0	8
176	Highly Conducting, Transparent, and Flexible Indium Oxide Thin Film Prepared by Atomic Layer Deposition Using a New Liquid Precursor Et ₂ InN(SiMe ₃) ₂ . ACS Applied Materials & Interfaces, 2014, 6, 17481-17488.	8.0	58
177	Study of Nitrogen High-Pressure Annealing on InGaZnO Thin-Film Transistors. ACS Applied Materials & Interfaces, 2014, 6, 13496-13501.	8.0	52
178	Effects of Ga:N Addition on the Electrical Performance of Zinc Tin Oxide Thin Film Transistor by Solution-Processing. ACS Applied Materials & Interfaces, 2014, 6, 9228-9235.	8.0	30
179	Growth behaviors and film properties of zinc oxide grown by atmospheric mist chemical vapor deposition. Journal of Alloys and Compounds, 2014, 614, 244-248.	5.5	13
180	The conducting tin oxide thin films deposited via atomic layer deposition using Tetrakis-dimethylamino tin and peroxide for transparent flexible electronics. Applied Surface Science, 2014, 313, 585-590.	6.1	47

#	Article	IF	CITATIONS
181	Low Voltage Operating Field Effect Transistors with Composite In ₂ O ₃ –ZnO–ZnGa ₂ O ₄ Nanofiber Network as Active Channel Layer. ACS Nano, 2014, 8, 2318-2327.	14.6	44
182	High Mobility and Stability of Thin-Film Transistors Using Silicon-Doped Amorphous Indium Tin Oxide Semiconductors. Journal of Electronic Materials, 2014, 43, 3177-3183.	2.2	5
183	The influence of oxygen partial pressure on the performance and stability of Ge-doped InGaO thin film transistors. Ceramics International, 2014, 40, 3215-3220.	4.8	39
184	Highly conductive SnO2 thin films deposited by atomic layer deposition using tetrakis-dimethyl-amine-tin precursor and ozone reactant. Surface and Coatings Technology, 2014, 259, 238-243.	4.8	71
185	Hall mobility manipulation in TiO2â^'x semiconductor films by hydrogen-ion irradiation. Journal of the Korean Physical Society, 2013, 62, 781-786.	0.7	8
186	Growth characteristics and film properties of gallium doped zinc oxide prepared by atomic layer deposition. Journal of Electroceramics, 2013, 31, 338-344.	2.0	23
187	Effect of in situ hydrogen plasma treatment on zinc oxide grown using low temperature atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 01A124.	2.1	17
188	Gas diffusion barrier characteristics of Al2O3/alucone films formed using trimethylaluminum, water and ethylene glycol for organic light emitting diode encapsulation. Thin Solid Films, 2013, 546, 153-156.	1.8	46
189	Rapid vapor deposition SiO2 thin film deposited at a low temperature using tris(tert-pentoxy)silanol and trimethyl-aluminum. Materials Chemistry and Physics, 2013, 142, 614-618.	4.0	8
190	Controlled growth and properties of p-type cuprous oxide films by plasma-enhanced atomic layer deposition at low temperature. Applied Surface Science, 2013, 285, 373-379.	6.1	40
191	Low temperature Ga2O3 atomic layer deposition using gallium tri-isopropoxide and water. Thin Solid Films, 2013, 546, 31-34.	1.8	77
192	Device instability of postannealed TiOx thin-film transistors under gate bias stresses. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 021204.	1.2	4
193	The effect of Nb doping on the performance and stability of TiO _{<i>x</i>} devices. Journal Physics D: Applied Physics, 2013, 46, 295102.	2.8	7
194	P.62: Effects of Amorphous InGaZnO Thin Film Transistors with Various Buffer Layers on Polyimide Substrate Under Negative Bias-temperature Stresses. Digest of Technical Papers SID International Symposium, 2013, 44, 1229-1231.	0.3	1
195	Device performance and bias instability of Ta doped InZnO thin film transistor as a function of process pressure. Applied Physics Letters, 2013, 102, .	3.3	40
196	The effect of Ta doping in polycrystalline TiOx and the associated thin film transistor properties. Applied Physics Letters, 2013, 103, .	3.3	20
197	Oxide TFTs for AMOLED TVs. Information Display, 2013, 29, 16-19.	0.2	12
198	Thin-film transistor behaviour and the associated physical origin of water-annealed In–Ga–Zn oxide semiconductor. Journal Physics D: Applied Physics, 2012, 45, 415307.	2.8	21

#	Article	IF	CITATIONS
199	Origin of Device Performance Degradation in InGaZnO Thin-Film Transistors after Crystallization. Japanese Journal of Applied Physics, 2012, 51, 015601.	1.5	5
200	Semiconducting behavior of niobium-doped titanium oxide in the amorphous state. Applied Physics Letters, 2012, 100, .	3.3	16
201	Low temperature atomic layer deposited Al-doped ZnO thin films and associated semiconducting properties. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 031210.	1.2	25
202	Thermal Evolution of Band Edge States in ZnO Film as a Function of Annealing Ambient Atmosphere. Electrochemical and Solid-State Letters, 2012, 15, H133.	2.2	35
203	The impact on in-situ-hydrogen-plasma treatment for zinc oxide plasma enhanced atomic layer deposition. Current Applied Physics, 2012, 12, S134-S138.	2.4	12
204	Effects of Al Concentration on Microstructural Characteristics and Electrical Properties of Al-Doped ZnO Thin Films on Si Substrates by Atomic Layer Deposition. Journal of Nanoscience and Nanotechnology, 2012, 12, 5598-5603.	0.9	6
205	Studies on optical, chemical, and electrical properties of rapid SiO2 atomic layer deposition using tris(tert-butoxy)silanol and trimethyl-aluminum. Materials Research Bulletin, 2012, 47, 3004-3007.	5.2	16
206	A study of thin film encapsulation on polymer substrate using low temperature hybrid ZnO/Al2O3 layers atomic layer deposition. Current Applied Physics, 2012, 12, S19-S23.	2.4	54
207	A role of oxygen vacancy on annealed ZnO film in the hydrogen atmosphere. Current Applied Physics, 2012, 12, S164-S167.	2.4	34
208	Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 2012, 520, 1679-1693.	1.8	905
209	Characteristics of short-channel amorphous In-Ga-Zn-O thin film transistors and their circuit performance as a load inverter. Journal of Electroceramics, 2012, 28, 74-79.	2.0	14
210	Origin of Device Performance Degradation in InGaZnO Thin-Film Transistors after Crystallization. Japanese Journal of Applied Physics, 2012, 51, 015601.	1.5	3
211	Studies on optical, structural and electrical properties of atomic layer deposited Al-doped ZnO thin films with various Al concentrations and deposition temperatures. Journal Physics D: Applied Physics, 2011, 44, 445305.	2.8	64
212	The characteristics of organic light emitting diodes with Al doped zinc oxide grown by atomic layer deposition as a transparent conductive anode. Synthetic Metals, 2011, 161, 823-827.	3.9	32
213	The effect of surface treatment of bottom contact organic thin film transistor. Synthetic Metals, 2011, 161, 1953-1957.	3.9	1
214	Thin film encapsulation for flexible AM-OLED: a review. Semiconductor Science and Technology, 2011, 26, 034001.	2.0	388
215	Depth-resolved correlation between physical and electrical properties of stressed SiNx gate insulator films. Journal of Electroceramics, 2011, 26, 63-67.	2.0	4
216	The influence of visible light on the gate bias instability of In–Ga–Zn–O thin film transistors. Solid-State Electronics, 2011, 62, 77-81.	1.4	32

#	Article	IF	CITATIONS
217	Role of the crystallinity of ZnO films in the electrical properties of bottom-gate thin film transistors. Thin Solid Films, 2011, 519, 6801-6805.	1.8	15
218	Photocatalytic Functional Coating of TiO\$_{2}\$ Thin Film Deposited by Cyclic Plasma Chemical Vapor Deposition at Atmospheric Pressure. Japanese Journal of Applied Physics, 2011, 50, 085502.	1.5	0
219	Improved Oxygen Diffusion Barrier Properties of Ruthenium-Titanium Nitride Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition. Journal of Nanoscience and Nanotechnology, 2011, 11, 671-674.	0.9	11
220	Molecular orbital ordering in titania and the associated semiconducting behavior. Applied Physics Letters, 2011, 99, 142104.	3.3	16
221	The Impact of Passivation Layers on the Negative Bias Temperature Illumination Instability of Ha-In-Zn-O TFT. Journal of the Electrochemical Society, 2011, 158, H115.	2.9	20
222	Investigation of Light-Induced Bias Instability in Hf-In-Zn-O Thin Film Transistors: A Cation Combinatorial Approach. Journal of the Electrochemical Society, 2011, 158, H433.	2.9	22
223	The Effect of Oxide and Nitride Passivation on the Behavior of In-Ga-Zn-O Thin-Film Transistors under Negative and Positive Bias Illumination Stress: A Photo-excited Charge Collection Spectroscopic Analysis. Journal of the Korean Physical Society, 2011, 59, 3376-3379.	0.7	4
224	The annealing effect on properties of ZnO thin film transistors with Ti/Pt source-drain contact. Journal of Electroceramics, 2010, 25, 145-149.	2.0	16
225	Atomic Layer Deposition ZnO:N Thin Film Transistor: The Effects of N Concentration on the Device Properties. Journal of the Electrochemical Society, 2010, 157, H214.	2.9	52
226	The Effects of UV Exposure on Plasma-Enhanced Atomic Layer Deposition ZnO Thin Film Transistor. Electrochemical and Solid-State Letters, 2010, 13, H151.	2.2	14
227	The impact of SiNx gate insulators on amorphous indium-gallium-zinc oxide thin film transistors under bias-temperature-illumination stress. Applied Physics Letters, 2010, 96, 193506.	3.3	43
228	The impact of gate dielectric materials on the light-induced bias instability in Hf–In–Zn–O thin film transistor. Applied Physics Letters, 2010, 97, 183503.	3.3	106
229	Meyer–Neldel Rule and Extraction of Density of States in Amorphous Indium–Gallium–Zinc-Oxide Thin-Film Transistor by Considering Surface Band Bending. Japanese Journal of Applied Physics, 2010, 49, 03CB02.	1.5	62
230	Investigating the TiN Film Quality and Growth Behavior for Plasma-enhanced Atomic Layer Deposition Using TiCl\$_4\$ and N\$_2\$/H\$_2\$/Ar Radicals. Journal of the Korean Physical Society, 2010, 57, 806-811.	0.7	8
231	Impact of high-kâ€^TiOx dielectric on device performance of indium-gallium-zinc oxide transistors. Applied Physics Letters, 2009, 94, .	3.3	70
232	The influence of the gate dielectrics on threshold voltage instability in amorphous indium-gallium-zinc oxide thin film transistors. Applied Physics Letters, 2009, 95, .	3.3	151
233	Electrical Instability of a-In–Ga–Zn–O TFTs Biased Below Accumulation Threshold. Electrochemical and Solid-State Letters, 2009, 12, J101.	2.2	12
234	High Reliable and Manufacturable Gallium Indium Zinc Oxide Thin-Film Transistors Using the Double Layers as an Active Layer. Journal of the Electrochemical Society, 2009, 156, H184.	2.9	36

#	Article	IF	CITATIONS
235	Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Applied Physics Letters, 2009, 95, .	3.3	414
236	Characteristics and Cleaning of Dry-Etching-Damaged Layer of Amorphous Oxide Thin-Film Transistor. Electrochemical and Solid-State Letters, 2009, 12, H95.	2.2	17
237	Enhancement of the TiO[sub 2] Thin-Film Dielectric Constant Through Pretreatment of Ir Substrate. Electrochemical and Solid-State Letters, 2009, 12, H77.	2.2	9
238	Novel ZrInZnO Thinâ€film Transistor with Excellent Stability. Advanced Materials, 2009, 21, 329-333.	21.0	249
239	The effect of thermal annealing sequence on amorphous InGaZnO thin film transistor with a plasma-treated source–drain structure. Thin Solid Films, 2009, 517, 6349-6352.	1.8	43
240	MOSFET-Like Behavior of a-InGaZnO Thin-Film Transistors With Plasma-Exposed Source–Drain Bulk Region. Journal of Display Technology, 2009, 5, 495-500.	1.2	45
241	A Novel Amorphous InGaZnO Thin Film Transistor Structure without Source/Drain Layer Deposition. Japanese Journal of Applied Physics, 2009, 48, 03B019.	1.5	52
242	Amorphous hafnium-indium-zinc oxide semiconductor thin film transistors. Applied Physics Letters, 2009, 95, .	3.3	217
243	12.1â€in. WXGA AMOLED display driven by InGaZnO thinâ€film transistors. Journal of the Society for Information Display, 2009, 17, 95-100.	2.1	65
244	3.1: <i>Distinguished Paper</i> : 12.1â€Inch WXGA AMOLED Display Driven by Indiumâ€Galliumâ€Zinc Oxide TFTs Array. Digest of Technical Papers SID International Symposium, 2008, 39, 1-4.	^{\$} 0.3	180
245	Origin of Subthreshold Swing Improvement in Amorphous Indium Gallium Zinc Oxide Transistors. Electrochemical and Solid-State Letters, 2008, 11, H157.	2.2	208
246	Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Applied Physics Letters, 2008, 92, .	3.3	461
247	Improvement of Morphological Stability of PEALD-Iridium Thin Films by Adopting Two-Step Annealing Process. Electrochemical and Solid-State Letters, 2008, 11, H303.	2.2	17
248	Bulk-Limited Current Conduction in Amorphous InGaZnO Thin Films. Electrochemical and Solid-State Letters, 2008, 11, H51.	2.2	50
249	Control of threshold voltage in ZnO-based oxide thin film transistors. Applied Physics Letters, 2008, 93, .	3.3	162
250	Double gate GalnZnO thin film transistors. Applied Physics Letters, 2008, 93, .	3.3	62
251	Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors. Applied Physics Letters, 2008, 93, .	3.3	191
252	High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Applied Physics Letters, 2007, 90, 212114.	3.3	427

#	ARTICLE	IF	CITATIONS
253	High performance thin film transistor with low temperature atomic layer deposition nitrogen-doped ZnO. Applied Physics Letters, 2007, 91, .	3.3	166
254	Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment. Applied Physics Letters, 2007, 90, 262106.	3.3	325
255	Constant Bias Stress Effects on Threshold Voltage of Pentacene Thin-Film Transistors Employing Polyvinylphenol Gate Dielectric. IEEE Electron Device Letters, 2007, 28, 874-876.	3.9	16
256	High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Applied Physics Letters, 2007, 91, .	3.3	364
257	Growth mechanism and diffusion barrier property of plasma-enhanced atomic layer deposition Ti–Si–N thin films. Journal of Vacuum Science & Technology B, 2006, 24, 1327.	1.3	20
258	A Chemical Reaction Path Design for the Atomic Layer Deposition of Tantalum Nitride Thin Films. Electrochemical and Solid-State Letters, 2006, 9, G282.	2.2	11
259	Atomic Layer Deposition of Y2O3Thin Films from Yttrium Tris(N,Nâ€~-diisopropylacetamidinate) and Water. Chemistry of Materials, 2005, 17, 4808-4814.	6.7	134
260	Tantalum(V) Nitride Inverse Opals as Photonic Structures for Visible Wavelengths. Journal of Physical Chemistry B, 2005, 109, 3764-3771.	2.6	57
261	High tunability (Ba,Sr)TiO3 thin films grown on atomic layer deposited TiO2 and Ta2O5 buffer layers. Applied Physics Letters, 2004, 85, 4705-4707.	3.3	65
262	Synthesis and Characterization of Volatile, Thermally Stable, Reactive Transition Metal Amidinates. Inorganic Chemistry, 2003, 42, 7951-7958.	4.0	267
263	Plasma-Enhanced Atomic Layer Deposition of Ta-N Thin Films. Journal of the Electrochemical Society, 2002, 149, C28.	2.9	113
264	Plasma-Enhanced Atomic Layer Deposition of Tantalum Nitrides Using Hydrogen Radicals as a Reducing Agent. Electrochemical and Solid-State Letters, 2001, 4, C17.	2.2	69
265	Kinetic modeling of film growth rates of TiN films in atomic layer deposition. Journal of Applied Physics, 2000, 87, 4632-4634.	2.5	39