John M Mcdowell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735878/publications.pdf

Version: 2024-02-01

54 6,403 33 52 papers citations h-index g-index

58 58 58 58 6514

58 58 58 6514
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16, 413-434.	2.0	695
2	Signatures of Adaptation to Obligate Biotrophy in the <i>Hyaloperonospora arabidopsidis</i> Genome. Science, 2010, 330, 1549-1551.	6.0	492
3	Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the RPP8 Locus of Arabidopsis. Plant Cell, 1998, 10, 1861-1874.	3.1	453
4	Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant Journal, 1996, 10, 107-121.	2.8	451
5	Signal transduction in the plant immune response. Trends in Biochemical Sciences, 2000, 25, 79-82.	3.7	439
6	Conserved C-Terminal Motifs Required for Avirulence and Suppression of Cell Death by <i>Phytophthora sojae effector</i> Avr1b. Plant Cell, 2008, 20, 1118-1133.	3.1	323
7	Plant disease resistance genes: recent insights and potential applications. Trends in Biotechnology, 2003, 21, 178-183.	4.9	249
8	Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant Journal, 2000, 22, 523-529.	2.8	228
9	Sequence-based identification of T-DNA insertion mutations in Arabidopsis: actin mutants act2-1 and act4-1. Plant Journal, 1995, 8, 613-622.	2.8	218
10	The Ubiquitin Ligase PUB22 Targets a Subunit of the Exocyst Complex Required for PAMP-Triggered Responses in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 4703-4716.	3.1	205
11	A key role for ALD1 in activation of local and systemic defenses in Arabidopsis. Plant Journal, 2004, 40, 200-212.	2.8	198
12	Structure and Evolution of the Actin Gene Family in <i>Arabidopsis thaliana</i> . Genetics, 1996, 142, 587-602.	1.2	196
13	Recent insights into R gene evolution. Molecular Plant Pathology, 2006, 7, 437-448.	2.0	185
14	Regulation and execution of programmed cell death in response to pathogens, stress and developmental cues. Current Opinion in Plant Biology, 2001, 4, 561-567.	3.5	169
15	Crosstalk between the Circadian Clock and Innate Immunity in Arabidopsis. PLoS Pathogens, 2013, 9, e1003370.	2.1	164
16	Recent Progress in RXLR Effector Research. Molecular Plant-Microbe Interactions, 2015, 28, 1063-1072.	1.4	164
17	Gene Expression Signatures from Three Genetically Separable Resistance Gene Signaling Pathways for Downy Mildew Resistance. Plant Physiology, 2004, 135, 1129-1144.	2.3	128
18	EDM2 is required for RPP7-dependent disease resistance in Arabidopsis and affects RPP7 transcript levels. Plant Journal, 2007, 49, 829-839.	2.8	120

#	Article	IF	CITATIONS
19	Two modes of pathogen recognition by plants. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8575-8576.	3.3	93
20	Signaling Pathways That Regulate the Enhanced Disease Resistance of ⟨i⟩Arabidopsis⟨ i⟩ "⟨i⟩Defense, No Death⟨ i⟩―Mutants. Molecular Plant-Microbe Interactions, 2008, 21, 1285-1296.	1.4	92
21	Homologous RXLR effectors from <i>Hyaloperonospora arabidopsidis</i> and <i>Phytophthora sojae</i> suppress immunity in distantly related plants. Plant Journal, 2012, 72, 882-893.	2.8	88
22	The <i>Arabidopsis</i> Downy Mildew Resistance Gene <i>RPP8</i> Is Induced by Pathogens and Salicylic Acid and Is Regulated by W Box <i>cis</i> Elements. Molecular Plant-Microbe Interactions, 2010, 23, 1303-1315.	1.4	82
23	The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. Plant Molecular Biology, 1997, 33, 125-139.	2.0	81
24	Molecular diversity at the plant–pathogen interface. Developmental and Comparative Immunology, 2008, 32, 736-744.	1.0	78
25	The exocyst subunit <i>Exo70B1</i> is involved in the immune response of <i>Arabidopsis thaliana</i> to different pathogens and cell death. Plant Signaling and Behavior, 2013, 8, e27421.	1.2	63
26	Iron homeostasis and plant immune responses: Recent insights and translational implications. Journal of Biological Chemistry, 2020, 295, 13444-13457.	1.6	62
27	Conserved RxLR Effectors From Oomycetes <i>Hyaloperonospora arabidopsidis</i> and <i>Phytophthora sojae</i> Suppress PAMP- and Effector-Triggered Immunity in Diverse Plants. Molecular Plant-Microbe Interactions, 2018, 31, 374-385.	1.4	60
28	The Arabidopsis thaliana ACT4/ACT12 actin gene subclass is strongly expressed throughout pollen development. Plant Journal, 1996, 10, 189-202.	2.8	57
29	ThePseudomonas syringaetype III effector AvrRpt2 functions downstream or independently of SA to promote virulence onArabidopsis thaliana. Plant Journal, 2004, 37, 494-504.	2.8	57
30	Genetic Analysis of Developmentally Regulated Resistance to Downy Mildew (Hyaloperonospora) Tj ETQq0 0 0	rgBT_/Over	ock 10 Tf 50
31	Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization. Molecular Plant-Microbe Interactions, 2018, 31, 22-33.	1.4	46
32	Genomes of obligate plant pathogens reveal adaptations for obligate parasitism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8921-8922.	3.3	34
33	Draft Assembly of <i>Phytophthora capsici </i> from Long-Read Sequencing Uncovers Complexity. Molecular Plant-Microbe Interactions, 2019, 32, 1559-1563.	1.4	33
34	The Arabidopsis PHD-finger protein EDM2 has multiple roles in balancing NLR immune receptor gene expression. PLoS Genetics, 2020, 16, e1008993.	1.5	33
35	Review: Functional linkages between amino acid transporters and plant responses to pathogens. Plant Science, 2018, 277, 79-88.	1.7	31
36	Oomycetes Used in Arabidopsis Research. The Arabidopsis Book, 2019, 17, e0188.	0.5	30

#	Article	IF	Citations
37	A $\scp>PCR$ assay for the quantification of growth of the oomycete pathogen $\scip<$ scp>Hyaloperonospora arabidopsidisin $\scip<$ Scp>rabidopsis thalianai>. Molecular Plant Pathology, 2015, 16, 893-898.	2.0	25
38	Propagation, Storage, and Assays with Hyaloperonospora arabidopsidis: A Model Oomycete Pathogen of Arabidopsis. Methods in Molecular Biology, 2011, 712, 137-151.	0.4	24
39	The Arabidopsis <scp>RRM</scp> domain protein <scp>EDM</scp> 3 mediates raceâ€specific disease resistance by controlling H3K9me2â€dependent alternative polyadenylation of <i><scp>RPP</scp>7</i> immune receptor transcripts. Plant Journal, 2019, 97, 646-660.	2.8	24
40	Genomic and transcriptomic insights into lifestyle transitions of a hemiâ€biotrophic fungal pathogen. New Phytologist, 2013, 197, 1032-1034.	3.5	19
41	Convergent evolution of disease resistance genes. Trends in Plant Science, 2004, 9, 315-317.	4.3	17
42	Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein. PLoS ONE, 2018, 13, e0195559.	1.1	16
43	Recent advances in understanding of fungal and oomycete effectors. Current Opinion in Plant Biology, 2022, 68, 102228.	3.5	15
44	A transposable element is domesticated for service in the plant immune system. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14821-14822.	3.3	13
45	Focus on Effector-Triggered Susceptibility. Molecular Plant-Microbe Interactions, 2018, 31, 5-5.	1.4	9
46	Increased Expression of UMAMIT Amino Acid Transporters Results in Activation of Salicylic Acid Dependent Stress Response. Frontiers in Plant Science, 2020, 11, 606386.	1.7	9
47	Hyaloperonospora arabidopsidis: A Model Pathogen of Arabidopsis. , 2014, , 209-234.		8
48	Zoospore exudates from Phytophthora nicotianae affect immune responses in Arabidopsis. PLoS ONE, 2017, 12, e0180523.	1.1	6
49	Effect of light and dark on the growth and development of downy mildew pathogen <i>Hyaloperonospora arabidopsidis</i> . Plant Pathology, 2020, 69, 1291-1300.	1.2	6
50	Beleaguered Immunity. Science, 2011, 334, 1354-1355.	6.0	5
51	Focus on Activation, Regulation, and Evolution of MTI and ETI. Molecular Plant-Microbe Interactions, 2019, 32, 5-5.	1.4	4
52	Conserved Expression of the Arabidopsis ACT1 and ACT3 Actin Subclass in Organ Primordia and Mature Pollen. Plant Cell, 1996, 8, 15.	3.1	2
53	A split green fluorescent protein system to enhance spatial and temporal sensitivity of translating ribosome affinity purification. Plant Journal, 2022, 111, 304-315.	2.8	2
54	Focus on Translational Research. Molecular Plant-Microbe Interactions, 2014, 27, 195-195.	1.4	0