Vitoon Uthaisangsuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735738/publications.pdf

Version: 2024-02-01

257450 254184 2,057 68 24 citations h-index papers

43 g-index 68 68 68 1312 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microstructure based prediction of strain hardening behavior of dual phase steels. Materials & Design, 2012, 41, 370-379.	5.1	189
2	Modelling of damage and failure in multiphase high strength DP and TRIP steels. Engineering Fracture Mechanics, 2011, 78, 469-486.	4.3	152
3	Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels. Materials & Design, 2013, 51, 756-766.	5.1	147
4	A micromechanical damage simulation of dual phase steels using XFEM. Computational Materials Science, 2012, 54, 271-279.	3.0	125
5	A Numerical and Experimental Investigation into Hot Stamping of Boron Alloyed Heat Treated Steels. Steel Research International, 2008, 79, 77-84.	1.8	85
6	Micromechanical modelling of damage behaviour of multiphase steels. Computational Materials Science, 2008, 43, 27-35.	3.0	82
7	Experimental and numerical failure criterion for formability prediction in sheet metal forming. Computational Materials Science, 2008, 43, 43-50.	3.0	79
8	Effect of hot working on microstructure evolution of as-cast Nickel Aluminum Bronze alloy. Materials & Design, 2014, 60, 233-243.	5.1	76
9	Stretch-flangeability characterisation of multiphase steel using a microstructure based failure modelling. Computational Materials Science, 2009, 45, 617-623.	3.0	71
10	Springback prediction in sheet metal forming of high strength steels. Materials & Design, 2013, 50, 253-266.	5.1	71
11	Characterisation of formability behaviour of multiphase steels by micromechanical modelling. International Journal of Fracture, 2009, 157, 55-69.	2.2	62
12	Experimental and numerical investigation of springback effect for advanced high strength dual phase steel. Materials & Design, 2012, 39, 318-328.	5.1	62
13	A study of local deformation and damage of dual phase steel. Materials & Design, 2014, 64, 729-742.	5.1	60
14	Modeling of flow behavior of Ti–6Al–4V alloy at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 599, 212-222.	5.6	56
15	Micromechanics-based modelling of properties and failure of multiphase steels. Computational Materials Science, 2007, 39, 17-22.	3.0	54
16	A review of recent progress in mechanical and corrosion properties of dual phase steels. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	3.8	44
17	A study of microcrack formation in multiphase steel using representative volume element and damage mechanics. Computational Materials Science, 2011, 50, 1225-1232.	3.0	43
18	Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 95-108.	2.2	35

#	Article	IF	Citations
19	Microstructure based modeling of deformation and failure of spot-welded advanced high strength steels sheets. Materials and Design, 2018, 160, 731-751.	7.0	34
20	Microstructure based flow stress modeling for quenched and tempered low alloy steel. Materials and Design, 2015, 82, 189-199.	7.0	31
21	Micromechanics-based modeling of stress–strain and fracture behavior of heat-treated boron steels for hot stamping process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 61-76.	5.6	30
22	Mechanical and fracture behavior of high strength steels under high strain rate deformation: Experiments and modelling. Materials Science & Experiments and Processing, 2020, 779, 139125.	5.6	28
23	Damage initiation and fracture loci for advanced high strength steel sheets taking into account anisotropic behaviour. Journal of Materials Processing Technology, 2017, 248, 218-235.	6.3	27
24	Stress and strain based fracture forming limit curves for advanced high strength steel sheet. International Journal of Material Forming, 2018, 11, 643-661.	2.0	26
25	Description of microstructures and mechanical properties of boron alloy steel in hot stamping process. Journal of Manufacturing Processes, 2016, 21, 87-100.	5.9	25
26	Modeling of bake-hardening effect for fine grain bainite-aided dual phase steel. Materials and Design, 2017, 118, 314-329.	7.0	24
27	Plastic deformation and fracture behavior of X65 pipeline steel: Experiments and modeling. Engineering Fracture Mechanics, 2018, 191, 82-101.	4.3	24
28	Stress based failure criterion for formability characterisation of metastable steels. Computational Materials Science, 2007, 39, 43-48.	3.0	22
29	Study of springback effect of AHS steels using a microstructure based modeling. International Journal of Mechanical Sciences, 2018, 135, 499-516.	6.7	22
30	Investigation of anisotropic plastic deformation of advanced high strength steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 592, 207-220.	5.6	19
31	Formability Prediction for Tube Hydroforming of Stainless Steel 304 Using Damage Mechanics Model. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	2.2	18
32	Analysis of forming limit behaviour of high strength steels under non-linear strain paths using a micromechanics damage modelling. International Journal of Mechanical Sciences, 2020, 183, 105828.	6.7	18
33	Micromechanical modeling of anisotropic behavior of pipeline steel grade X65. Materials and Design, 2017, 127, 243-260.	7.0	17
34	Effect of Fine Grained Dual Phase Steel on Bake Hardening Properties. Steel Research International, 2017, 88, 1600150.	1.8	17
35	A hybrid method for prediction of damage initiation and fracture and its application to forming limit analysis of advanced high strength steel sheet. Engineering Fracture Mechanics, 2016, 166, 97-127.	4.3	15
36	Investigation of damage initiation in high-strength dual-phase steels using cohesive zone model. International Journal of Damage Mechanics, 2018, 27, 409-438.	4.2	14

#	Article	IF	CITATIONS
37	Processing, microstructure adjustments, and mechanical properties of dual phase steels: A review. Materials Science and Technology, 2021, 37, 561-591.	1.6	12
38	Influence of Martensite Distribution on the Mechanical Properties of Dual Phase Steels: Experiments and Simulation., 2009, 80, 582.		12
39	Influences of Microstructure Characteristics on Forming Limit Behavior of Dual Phase Steels. Steel Research International, 2015, 86, 1594-1609.	1.8	11
40	Effects of Isothermal Aging on Microstructure Evolution, Hardness and Wear Properties of Wrought Co-Cr-Mo Alloy. Journal of Materials Engineering and Performance, 2017, 26, 955-968.	2.5	10
41	Tensile properties of hypoeutectic Al-Ni alloys: Experiments and FE simulations. Journal of Alloys and Compounds, 2021, 889, 161664.	5.5	10
42	Characterization of Static Performance and Failure of Resistance Spot Welds of High-Strength and Press-Hardened Steels. Journal of Materials Engineering and Performance, 2019, 28, 2017-2028.	2.5	9
43	Micromechanics Based Modeling of Effect of Sigma Phase on Mechanical and Failure Behavior of Duplex Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1293-1313.	2.2	9
44	Anisotropic Plastic Behavior of TRIP 780 Steel Sheet in Hole Expansion Test. Key Engineering Materials, 2012, 504-506, 89-94.	0.4	8
45	Microstructure based Description of Deformation Behavior of Dual Phase Steel Sheets. Procedia Engineering, 2014, 81, 1366-1371.	1.2	8
46	Effect of ausforming on microstructure and hardness characteristics of bainitic steel. Journal of Materials Research and Technology, 2020, 9, 13365-13374.	5.8	8
47	Anisotropic fracture forming limit curve and its applications for sheet metal forming with complex strain paths of aluminum sheet. International Journal of Advanced Manufacturing Technology, 2021, 115, 3553-3577.	3.0	8
48	Investigations of fatigue crack propagation in ER8 railway wheel steel with varying microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142980.	5.6	8
49	Failure investigation of liquefied petroleum gas cylinder using FAD and XFEM. International Journal of Pressure Vessels and Piping, 2019, 171, 69-78.	2.6	7
50	Micromechanics based modelling of fatigue crack initiation of high strength steel. International Journal of Fatigue, 2020, 139, 105762.	5.7	7
51	Forming Limit Curves and Forming Limit Stress Curves for Advanced High Strength Steels. Materials Science Forum, 0, 773-774, 109-114.	0.3	5
52	Effects of Bainitic Phase on Mechanical Properties of Bainiteâ [^] 'Aided Multiphase Steels. Steel Research International, 2017, 88, 1700004.	1.8	4
53	Simplified identification of material parameters for Yoshida-Uemori kinematic hardening model. Proceedings of SPIE, 2014, , .	0.8	3
54	Modelling of Mechanical Properties of Pearlitic Rail Steel. Key Engineering Materials, 0, 798, 3-8.	0.4	3

#	Article	IF	CITATIONS
55	Determination of Damage Criterion Using a Hybrid Analysis for Advanced High Strength Steel. Advanced Materials Research, 2013, 849, 200-206.	0.3	2
56	Experimental investigations and FE modeling considering microstructural inhomogeneity of laser welded steel-aluminum joints. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	3.8	2
57	Investigations on fracture curves in strain and stress space for advanced high strength steel forming. Journal of Physics: Conference Series, 2016, 734, 032066.	0.4	1
58	A microstructure based modelling of high strength steel sheet under stretch-bending. Journal of Physics: Conference Series, 2018, 1063, 012065.	0.4	1
59	Finite element based analysis of two-stage forming for advanced high strength steel part. Procedia Manufacturing, 2018, 15, 668-675.	1.9	1
60	Experimental and numerical study of springback effect of advanced high strength steel in a V-shape bending. IOP Conference Series: Materials Science and Engineering, 2021, 1157, 012042.	0.6	1
61	A geometrical parametric study of side door reinforced beams under lateral impact load. International Journal of Crashworthiness, 2022, 27, 1662-1677.	1.9	1
62	Microstructure and Mechanical Properties of Dualâ€Phase Steels by Combining Adjusted Initial Microstructures and Severe Plastic Deformation. Steel Research International, 2022, 93, 2100596.	1.8	1
63	Kinetic Model of Isothermal Bainitic Transformation of Low Carbon Steels under Ausforming Conditions., 2022, 1, 93-115.		1
64	Effects of Anisotropic Yield Functions on Prediction of Forming Limit Diagram for AHS Steel. Key Engineering Materials, 2014, 622-623, 257-264.	0.4	0
65	Prediction of Stress–Strain Curves of Metastable Austenitic Stainless Steel Considering Deformation-Induced Martensitic Transformation. Journal of Engineering Materials and Technology, Transactions of the ASME, 2017, 139, .	1.4	0
66	Finite element analysis of AHS steel under dynamic loading using a micromechanical modelling. Journal of Physics: Conference Series, 2018, 1063, 012109.	0.4	0
67	Anisotropic fracture forming limit curves of aluminum alloy AA5052-H32 sheet. AIP Conference Proceedings, 2020, , .	0.4	0
68	Study of Effect of Varying Clearances on the Springback of Advanced High Strength Steel Sheets. Journal of Physics: Conference Series, 2022, 2175, 012008.	0.4	0