Ali Abou Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735699/publications.pdf

Version: 2024-02-01

172207 197535 2,541 60 29 49 citations h-index g-index papers 67 67 67 3652 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Microfluidics in Inorganic Chemistry. Angewandte Chemie - International Edition, 2010, 49, 6268-6286.	7.2	212
2	Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo. Advanced Functional Materials, 2018, 28, 1803660.	7.8	187
3	Iron Oxide Nanoflowers @ CuS Hybrids for Cancer Tri-Therapy: Interplay of Photothermal Therapy, Magnetic Hyperthermia and Photodynamic Therapy. Theranostics, 2019, 9, 1288-1302.	4.6	170
4	Synthesis of iron oxide nanoparticles in a microfluidic device: preliminary results in a coaxial flow millichannel. Chemical Communications, 2008, , 1783.	2.2	124
5	Recent insights in magnetic hyperthermia: From the "hot-spot―effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids. Advanced Drug Delivery Reviews, 2019, 138, 233-246.	6.6	122
6	Multistep Continuousâ€Flow Microsynthesis of Magnetic and Fluorescent γâ€Fe ₂ O ₃ @SiO ₂ Core/Shell Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 7180-7183.	7.2	110
7	Biosynthesis of magnetic nanoparticles from nano-degradation products revealed in human stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4044-4053.	3.3	98
8	Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?. Nanoscale, 2015, 7, 18872-18877.	2.8	97
9	Intracellular Biodegradation of Ag Nanoparticles, Storage in Ferritin, and Protection by a Au Shell for Enhanced Photothermal Therapy. ACS Nano, 2018, 12, 6523-6535.	7.3	91
10	Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chemical Science, 2014, 5, 1854-1859.	3.7	71
11	Iron Oxide Mediated Photothermal Therapy in the Second Biological Window: A Comparative Study between Magnetite/Maghemite Nanospheres and Nanoflowers. Nanomaterials, 2020, 10, 1548.	1.9	58
12	Synthesis of Goethite by Separation of the Nucleation and Growth Processes of Ferrihydrite Nanoparticles Using Microfluidics. Angewandte Chemie - International Edition, 2009, 48, 2342-2345.	7.2	53
13	Static Magnetowetting of Ferrofluid Drops. Langmuir, 2016, 32, 7639-7646.	1.6	53
14	Magnetoâ€Thermal Metrics Can Mirror the Longâ€Term Intracellular Fate of Magnetoâ€Plasmonic Nanohybrids and Reveal the Remarkable Shielding Effect of Gold. Advanced Functional Materials, 2017, 27, 1605997.	7.8	51
15	Comparison of Iron Oxide Nanoparticles in Photothermia and Magnetic Hyperthermia: Effects of Clustering and Silica Encapsulation on Nanoparticles' Heating Yield. Applied Sciences (Switzerland), 2020, 10, 7322.	1.3	49
16	Chemical communication and dynamics of droplet emulsions in networks of Belousov–Zhabotinsky micro-oscillators produced by microfluidics. Lab on A Chip, 2017, 17, 1179-1189.	3.1	46
17	Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential. ACS Nano, 2021, 15, 9782-9795.	7.3	45
18	Magnetic nanoparticles in regenerative medicine: what of their fate and impact in stem cells?. Materials Today Nano, 2020, 11, 100084.	2.3	44

#	Article	IF	CITATIONS
19	Synthesis of cobalt ferrite nanoparticles in continuous-flow microreactors. RSC Advances, 2012, 2, 11263.	1.7	43
20	Calcium oxalate precipitation by diffusion using laminar microfluidics: toward a biomimetic model of pathological microcalcifications. Lab on A Chip, 2016, 16, 1157-1160.	3.1	40
21	On the Synthesis of Au Nanoparticles Using EDTA as a Reducing Agent. Journal of Physical Chemistry C, 2013, 117, 20958-20966.	1.5	39
22	Design of Vesicles Using Capillary Microfluidic Devices: From Magnetic to Multifunctional Vesicles. Advanced Materials, 2012, 24, 3544-3548.	11.1	37
23	Continuous Multistep Microfluidic Assisted Assembly of Fluorescent, Plasmonic, and Magnetic Nanostructures. Angewandte Chemie - International Edition, 2013, 52, 1994-1997.	7.2	36
24	Fluorescence Confocal Laser Scanning Microscopy for pH Mapping in a Coaxial Flow Microreactor: Application in the Synthesis of Superparamagnetic Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 18097-18105.	1.5	35
25	Continuous chemical operations and modifications on magnetic γ-Fe ₂ O ₃ nanoparticles confined in nanoliter droplets for the assembly of fluorescent and magnetic SiO ₂ @γ-Fe ₂ O ₃ . Chemical Communications, 2015, 51, 16904-16907.	2.2	35
26	Sustainable strategies for large-scale nanotechnology manufacturing in the biomedical field. Green Chemistry, 2018, 20, 3897-3907.	4.6	35
27	Dynamics of Ferrofluid Drops on Magnetically Patterned Surfaces. Langmuir, 2018, 34, 8917-8922.	1.6	34
28	Magnetic Field-Driven Deformation, Attraction, and Coalescence of Nonmagnetic Aqueous Droplets in an Oil-Based Ferrofluid. Langmuir, 2020, 36, 5048-5057.	1.6	32
29	Structure–Property–Function Relationships of Iron Oxide Multicore Nanoflowers in Magnetic Hyperthermia and Photothermia. ACS Nano, 2022, 16, 271-284.	7.3	32
30	Division of Ferrofluid Drops Induced by a Magnetic Field. Langmuir, 2018, 34, 9762-9767.	1.6	31
31	Interaction of the Belousov–Zhabotinsky Reaction with Phospholipid Engineered Membranes. Journal of Physical Chemistry B, 2015, 119, 10224-10230.	1.2	29
32	Droplet Liquid/Liquid Interfaces Generated in a Microfluidic Device for Assembling Janus Inorganic Nanohybrids. Journal of Physical Chemistry C, 2015, 119, 10758-10765.	1.5	27
33	Tuning the Chemical Communication of Oscillating Microdroplets by Means of Membrane Composition. Journal of Physical Chemistry C, 2017, 121, 13256-13264.	1.5	26
34	A Comparison Study of Functional Groups (Amine vs. Thiol) for Immobilizing AuNPs on Zeolite Surface. Nanomaterials, 2019, 9, 1034.	1.9	23
35	Maghemite nanoparticles stabilize the protein corona formed with transferrin presenting different iron-saturation levels. Nanoscale, 2019, 11, 16063-16070.	2.8	22
36	Membrane Structure Drives Synchronization Patterns in Arrays of Diffusively Coupled Self-Oscillating Droplets. Journal of Physical Chemistry Letters, 2020, 11, 2014-2020.	2.1	22

#	Article	IF	CITATIONS
37	Scanning Electrochemical Microscopy of Belousov–Zhabotinsky Reaction: How Confined Oscillations Reveal Short Lived Radicals and Auto-Catalytic Species. Analytical Chemistry, 2015, 87, 9621-9630.	3.2	20
38	High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels. Applied Surface Science, 2018, 439, 272-281.	3.1	19
39	Facilitated Lewis Acid Transfer by Phospholipids at a (Water CHCl < sub > 3 < / sub >) Liquid Liquid Interface toward Biomimetic and Energy Applications. Journal of Physical Chemistry C, 2016, 120, 11977-11983.	1.5	18
40	Flow Chemistry to Control the Synthesis of Nano and Microparticles for Biomedical Applications. Current Topics in Medicinal Chemistry, 2014, 14, 676-689.	1.0	18
41	Transient cell stiffening triggered by magnetic nanoparticle exposure. Journal of Nanobiotechnology, 2021, 19, 117.	4.2	12
42	Peptide functionalized magneto-plasmonic nanoparticles obtained by microfluidics for inhibition of \hat{l}^2 -amyloid aggregation. Journal of Materials Chemistry B, 2018, 6, 5091-5099.	2.9	11
43	Plasma Polymer Layers with Primary Amino Groups for Immobilization of Nano- and Microparticles. Plasma Chemistry and Plasma Processing, 2020, 40, 589-606.	1.1	10
44	Interaction of fibrinogen–magnetic nanoparticle bioconjugates with integrin reconstituted into artificial membranes. Nanoscale, 2020, 12, 19918-19930.	2.8	9
45	Lipid-Stabilized Water–Oil Interfaces Studied by Microfocusing Small-Angle X-ray Scattering. Langmuir, 2017, 33, 9100-9105.	1.6	8
46	Synchronization scenarios induced by delayed communication in arrays of diffusively coupled autonomous chemical oscillators. Physical Chemistry Chemical Physics, 2021, 23, 17606-17615.	1.3	8
47	Assembling magneto-plasmonic microcapsules using a microfluidic device. Chemical Communications, 2013, 49, 412-414.	2.2	7
48	Easy-to-assemble and adjustable coaxial flow-focusing microfluidic device for generating controllable water/oil/water double emulsions: Toward templating giant liposomes with different properties. Journal of Flow Chemistry, 2015, 5, 234-240.	1.2	7
49	Synthesis of benzaldehyde with high selectivity using immobilized AuNPs and AuNPs@zeolite in a catalytic microfluidic system. Lab on A Chip, 2019, 19, 2866-2873.	3.1	7
50	Microfluidic compartmentalization of diffusively coupled oscillators in multisomes induces a novel synchronization scenario. Chemical Communications, 2020, 56, 11771-11774.	2.2	7
51	Investigating CaOx Crystal Formation in the Absence and Presence of Polyphenols under Microfluidic Conditions in Relation with Nephrolithiasis. Crystal Growth and Design, 2020, 20, 7683-7693.	1.4	6
52	High Temperature Continuous Flow Syntheses of Iron Oxide Nanoflowers Using the Polyol Route in a Multi-Parametric Millifluidic Device. Nanomaterials, 2022, 12, 119.	1.9	6
53	Exploring the water/oil/water interface of phospholipid stabilized double emulsions by micro-focusing synchrotron SAXS. RSC Advances, 2019, 9, 33429-33435.	1.7	5
54	Sprouting Droplets Driven by Physical Effects Alone. Langmuir, 2017, 33, 4235-4241.	1.6	3

#	Article	IF	CITATIONS
55	Tuning the load of gold and magnetic nanoparticles in nanogels through their design for enhanced dual magneto-photo-thermia. Chemical Communications, 2021, 57, 5945-5948.	2.2	3
56	Urolithiasis: What can we learn from a Nature which dysfunctions?. Comptes Rendus Chimie, 2016, 19, 1558-1564.	0.2	2
57	Signal Transduction and Communication Through Model Membranes in Networks of Coupled Chemical Oscillators. Communications in Computer and Information Science, 2018, , 16-31.	0.4	2
58	Tip Streaming of a Lipid-Stabilized Double Emulsion Generated in a Microfluidic Channel. Langmuir, 2021, 37, 7442-7448.	1.6	2
59	In Vivo Assimilation of CuS, Iron Oxide and Iron Oxide@CuS Nanoparticles in Mice: A 6-Month Follow-Up Study. Pharmaceutics, 2022, 14, 179.	2.0	2
60	Ferrite-gold magnetoplasmonic nanohybrids for bimodal heating by magnetic hyperthermia and photothermia., 2021,, 65-90.		1