Yuichi Kita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735654/publications.pdf

Version: 2024-02-01

		1478505	1199594	
15	229	6	12	
papers	citations	h-index	g-index	
15	15	15	276	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Fe-assisted hydrothermal liquefaction of cellulose: Effects of hydrogenation catalyst addition on properties of water-soluble fraction. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104719.	5. 5	22
2	Mechanism of the Fe-Assisted Hydrothermal Liquefaction of Lignocellulosic Biomass. Industrial & Engineering Chemistry Research, 2018, 57, 14870-14877.	3.7	31
3	Fe-Assisted Hydrothermal Liquefaction of Lignocellulosic Biomass for Producing High-Grade Bio-Oil. ACS Sustainable Chemistry and Engineering, 2017, 5, 3562-3569.	6.7	49
4	Transformation of methyl laurate into lauryl alcohol over a Ru–Sn–Mo/C catalyst by using zerovalent iron and water as an in situ hydrogen source. Applied Catalysis A: General, 2016, 523, 85-91.	4.3	7
5	Unique Approach for Transforming Glucose to C3 Platform Chemicals Using Metallic Iron and a Pd/C Catalyst in Water. Bulletin of the Chemical Society of Japan, 2016, 89, 1026-1033.	3.2	21
6	Selective transformation of glucose into propylene glycol on Ru/C catalysts combined with ZnO under low hydrogen pressures. Applied Catalysis A: General, 2015, 502, 1-7.	4.3	32
7	New process for manufacturing maleimides. Catalysis Surveys From Asia, 1998, 2, 187-198.	1.2	2
8	Development and Industrialization of a New Process for Manufacturing Maleimides Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1998, 1998, 1-9.	0.1	0
9	Synthesis of N-cyclohexylmaleimide for heat-resistant transparent methacrylic resin. Journal of Applied Polymer Science, 1997, 63, 363-368.	2.6	57
10	Coloration mechanism of the acrylonitrile solution of N-phenylmaleimide and its stabilization method. Journal of Applied Polymer Science, 1997, 64, 2037-2045.	2.6	1
11	Studies on Synthesis and Application of N-Substituted Maleimides. V. Industrial Synthesis Method of N-Phenylmaleimide Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1996, 1996, 264-268.	0.1	1
12	Studies on the Synthesis and Application of N-Substituted Maleimides. VI. Supported Catalyst for Synthesis of N-Phenylmaleimide Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1996, 1996, 269-274.	0.1	3
13	Studies on Synthesis and Application of N-Substituted maleimides. III. Mechanism of the Synthesis of N-Phenylmaleimide and Improvement of Its Selectivity Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1996, 1996, 375-384.	0.1	0
14	Studies on Synthesis and Application of N-Substituted Maleimides. VIII. Synthesis of N-(2,4,6-Tribromophenyl) maleimide Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1996, , 471-476.	0.1	0
15	Amine Salt as an Effective Catalyst for Synthesis of N-Substituted Maleimide Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1995, 1995, 971-976.	0.1	3