
Deirdre B Gleeson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 2012, 354, 311-324.	1.8	382
2	Low Pore Connectivity Increases Bacterial Diversity in Soil. Applied and Environmental Microbiology, 2010, 76, 3936-3942.	1.4	247
3	Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration. Applied and Environmental Microbiology, 2011, 77, 6158-6164.	1.4	226
4	Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiology Ecology, 2009, 67, 381-388.	1.3	159
5	Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas Flux. Advances in Agronomy, 2016, 139, 1-71.	2.4	144
6	Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biology and Biochemistry, 2010, 42, 1888-1891.	4.2	134
7	Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biology and Biochemistry, 2018, 117, 72-82.	4.2	120
8	Characterization of Fungal Community Structure on a Weathered Pegmatitic Granite. Microbial Ecology, 2005, 50, 360-368.	1.4	114
9	Characterization of Bacterial Community Structure on a Weathered Pegmatitic Granite. Microbial Ecology, 2006, 51, 526-534.	1.4	114
10	Fine endophytes (<i>Glomus tenue</i>) are related to Mucoromycotina, not Glomeromycota. New Phytologist, 2017, 213, 481-486.	3.5	101
11	Low Light Availability Alters Root Exudation and Reduces Putative Beneficial Microorganisms in Seagrass Roots. Frontiers in Microbiology, 2017, 8, 2667.	1.5	88
12	Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiology Ecology, 2007, 61, 414-423.	1.3	86
13	Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils?. Soil Biology and Biochemistry, 2013, 62, 28-35.	4.2	66
14	Influence of water potential on nitrification and structure of nitrifying bacterial communities in semiarid soils. Applied Soil Ecology, 2008, 40, 189-194.	2.1	58
15	Implications of co-contamination with aged heavy metals and total petroleum hydrocarbons on natural attenuation and ecotoxicity in Australian soils. Environmental Pollution, 2018, 243, 94-102.	3.7	49
16	Meter-Scale Diversity of Microbial Communities on a Weathered Pegmatite Granite Outcrop in the Wicklow Mountains, Ireland; Evidence for Mineral Induced Selection?. Geomicrobiology Journal, 2010, 27, 1-14.	1.0	48
17	Seasonal and management influences on bacterial community structure in an upland grassland soil. FEMS Microbiology Ecology, 2005, 53, 329-337.	1.3	46
18	Overproduction of proline in transgenic hybrid larch (Larix x leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost. Molecular Breeding, 2005, 15, 21-29.	1.0	45

DEIRDRE B GLEESON

#	Article	IF	CITATIONS
19	Metagenomic Evidence of Microbial Community Responsiveness to Phosphorus and Salinity Gradients in Seagrass Sediments. Frontiers in Microbiology, 2018, 9, 1703.	1.5	44
20	Soil Salinity and pH Drive Soil Bacterial Community Composition and Diversity Along a Lateritic Slope in the Avon River Critical Zone Observatory, Western Australia. Frontiers in Microbiology, 2019, 10, 1486.	1.5	41
21	Microbialite taphonomy and biogenicity: new insights from NanoSIMS. Geobiology, 2010, 8, 403-416.	1.1	38
22	Root microbiomes as indicators of seagrass health. FEMS Microbiology Ecology, 2020, 96, .	1.3	38
23	Responses of Ammonia-Oxidising Bacterial Communities to Nitrogen, Lime, and Plant Species in Upland Grassland Soil. Applied and Environmental Soil Science, 2010, 2010, 1-7.	0.8	36
24	Effect of Sheep Urine Deposition on the Bacterial Community Structure in an Acidic Upland Grassland Soil. Applied and Environmental Microbiology, 2006, 72, 7231-7237.	1.4	29
25	Environmental drivers of soil microbial community structure and function at the Avon River Critical Zone Observatory. Science of the Total Environment, 2016, 571, 1407-1418.	3.9	29
26	Afforestation alters community structure of soil fungi. Fungal Biology, 2010, 114, 580-584.	1.1	27
27	Molecular Characterization of Fungal Communities in Sandstone. Geomicrobiology Journal, 2010, 27, 559-571.	1.0	25
28	Structural diversity of bacterial communities in a heavy metal mineralized granite outcrop. Environmental Microbiology, 2006, 8, 383-393.	1.8	24
29	Understanding Microbially Active Biogeochemical Environments. Advances in Applied Microbiology, 2007, 62, 81-104.	1.3	21
30	Biodiversity of Living, Non-marine, Thrombolites of Lake Clifton, Western Australia. Geomicrobiology Journal, 2016, 33, 850-859.	1.0	21
31	Variation in morphological and physiological root traits and organic acid exudation of three sweet potato (Ipomoea batatas) cultivars under seven phosphorus levels. Scientia Horticulturae, 2019, 256, 108572.	1.7	19
32	Agricultural landâ€use favours Mucoromycotinian, but not Glomeromycotinian, arbuscular mycorrhizal fungi across ten biomes. New Phytologist, 2022, 233, 1369-1382.	3.5	19
33	Evidence for Niche Differentiation in the Environmental Responses of Co-occurring Mucoromycotinian Fine Root Endophytes and Glomeromycotinian Arbuscular Mycorrhizal Fungi. Microbial Ecology, 2021, 81, 864-873.	1.4	17
34	Influence of exogenous L-proline on embryogenic cultures of larch (Larix leptoeuropaeaDengler), sitka spruce (Picea sitchensis(Bong.) Carr.) and oak (Quercus roburL.) subjected to cold and salt stress. Annals of Forest Science, 2004, 61, 125-128.	0.8	13
35	Biodegradability of polar compounds formed from weathered diesel. Biodegradation, 2018, 29, 443-461.	1.5	10
36	Fungal Biogeochemistry: A Central Role in the Environmental Fate of Lead. Current Biology, 2012, 22, R82-R84.	1.8	9

DEIRDRE B GLEESON

#	Article	IF	CITATIONS
37	An agricultural practise with climate and food security benefits: "Claying―with kaolinitic clay subsoil decreased soil carbon priming and mineralisation in sandy cropping soils. Science of the Total Environment, 2020, 709, 134488.	3.9	9
38	Unravelling Microbial Communities Associated with Different Light Non-Aqueous Phase Liquid Types Undergoing Natural Source Zone Depletion Processes at a Legacy Petroleum Site. Water (Switzerland), 2021, 13, 898.	1.2	8
39	Increasing the Size of the Microbial Biomass Altered Bacterial Community Structure which Enhances Plant Phosphorus Uptake. PLoS ONE, 2016, 11, e0166062.	1.1	8
40	Removal of phosphorus in residues of legume or cereal plants determines growth of subsequently planted wheat in a high phosphorus fixing soil. Biology and Fertility of Soils, 2016, 52, 1085-1092.	2.3	7
41	Response of microbial biomass and CO2-C loss to wetting patterns are temperature dependent in a semi-arid soil. Scientific Reports, 2017, 7, 13032.	1.6	7
42	Liming and priming: the long-term impact of pH amelioration on mineralisation may negate carbon sequestration gains Soil Security, 2021, 3, 100007.	1.2	7
43	Soil microbes of an urban remnant riparian zone have greater potential for N removal than a degraded riparian zone. Environmental Microbiology, 2020, 22, 3302-3314.	1.8	7
44	Comparative metagenomics of microbial mats from hypersaline lakes at Rottnest Island (WA,) Tj ETQq0 0 0 rgBT microbialite accretion. Limnology and Oceanography, 2020, 65, S293.	/Overlock 1.6	10 Tf 50 467 6
45	Phosphate fertiliser alters carboxylates and bacterial communities in sweet potato (Ipomoea batatas) Tj ETQq1 1	0.784314 1.8	rgBT /Overlo
46	Natural attenuation of legacy hydrocarbon spills in pristine soils is feasible despite difficult environmental conditions in the monsoon tropics. Science of the Total Environment, 2021, 799, 149335.	3.9	3
47	Rock-art microbiome: influences on long term preservation of historic and culturally important engravings. Microbiology Australia, 2018, 39, 33.	0.1	3
48	Society for General Microbiology 154th Meeting. Joint Environmental Microbiology Group and the British Mycological Society session, Bath, March 31-April 1 2004. The Mycologist, 2004, 18, 169.	0.5	0
49	Bacterial Communities' Response to Nitrogen, Lime and Plants. , 2013, , .		Ο