Huimin Zhao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6735510/huimin-zhao-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56 205 11,599 101 h-index g-index citations papers 14,025 225 7.04 9.5 ext. citations L-index avg, IF ext. papers

#	Paper	IF	Citations
205	Metabolic engineering of Rhodotorula toruloides IFO0880 improves C16 and C18 fatty alcohol production from synthetic media <i>Microbial Cell Factories</i> , 2022 , 21, 26	6.4	1
204	PlasmidMaker is a versatile, automated, and high throughput end-to-end platform for plasmid construction <i>Nature Communications</i> , 2022 , 13, 2697	17.4	0
203	A widespread pathway for substitution of adenine by diaminopurine in phage genomes. <i>Science</i> , 2021 , 372, 512-516	33.3	21
202	The Glycyl Radical Enzyme Arylacetate Decarboxylase from Olsenella scatoligenes. <i>ACS Catalysis</i> , 2021 , 11, 5789-5794	13.1	0
201	Replication timing maintains the global epigenetic state in human cells. <i>Science</i> , 2021 , 372, 371-378	33.3	24
200	macroMS: Image-Guided Analysis of Random Objects by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2021 , 32, 1180-1188	3.5	2
199	Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. <i>Biotechnology for Biofuels</i> , 2021 , 14, 115	7.8	8
198	Precise Regulation of Cas9-Mediated Genome Engineering by Anti-CRISPR-Based Inducible CRISPR Controllers. <i>ACS Synthetic Biology</i> , 2021 , 10, 1320-1327	5.7	3
197	A rapid, accurate, scalable, and portable testing system for COVID-19 diagnosis. <i>Nature Communications</i> , 2021 , 12, 2905	17.4	18
196	Structural and Biochemical Investigation of UTP Cyclohydrolase. ACS Catalysis, 2021, 11, 8895-8901	13.1	1
195	Cloning and characterization of a panel of mitochondrial targeting sequences for compartmentalization engineering in Saccharomyces cerevisiae. <i>Biotechnology and Bioengineering</i> , 2021 , 118, 4269-4277	4.9	O
194	Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering. <i>Metabolic Engineering</i> , 2021 , 66, 319-327	9.7	3
193	TALEN outperforms Cas9 in editing heterochromatin target sites. <i>Nature Communications</i> , 2021 , 12, 60	617.4	23
192	Development of Host-Orthogonal Genetic Systems for Synthetic Biology. <i>Advanced Biology</i> , 2021 , 5, e2000252		3
191	Can Deep Learning Solve the Cas9 Dilemma?. CRISPR Journal, 2021, 4, 13-15	2.5	1
190	Cas12a-assisted precise targeted cloning using in vivo Cre-lox recombination. <i>Nature Communications</i> , 2021 , 12, 1171	17.4	8
189	Expanding the Potential of Mammalian Genome Engineering Targeted DNA Integration. <i>ACS Synthetic Biology</i> , 2021 , 10, 429-446	5.7	1

1	188	Directed Evolution: Methodologies and Applications. <i>Chemical Reviews</i> , 2021 , 121, 12384-12444	68.1	37
1	187	High-Throughput Mass Spectrometry Complements Protein Engineering 2021 , 57-79		0
1	ı86	Biochemical Investigation of 3-Sulfopropionaldehyde Reductase HpfD. <i>ChemBioChem</i> , 2021 , 22, 2862-28	8 6.6	
1	185	ECNet is an evolutionary context-integrated deep learning framework for protein engineering. <i>Nature Communications</i> , 2021 , 12, 5743	17.4	6
1	184	Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. <i>Nature Structural and Molecular Biology</i> , 2021 , 28, 152-161	17.6	43
1	183	Genome-scale metabolic reconstruction of the non-model yeast SD108 and its application to organic acids production. <i>Metabolic Engineering Communications</i> , 2020 , 11, e00148	6.5	5
1	182	Fine-tuning the regulation of Cas9 expression levels for efficient CRISPR-Cas9 mediated recombination in Streptomyces. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2020 , 47, 413-423	4.2	13
1	181	Optically guided mass spectrometry to screen microbial colonies for directed enzyme evolution. <i>Methods in Enzymology</i> , 2020 , 644, 255-273	1.7	
1	ι8o	Biosystems Design by Machine Learning. ACS Synthetic Biology, 2020, 9, 1514-1533	5.7	29
1	179	Two radical-dependent mechanisms for anaerobic degradation of the globally abundant organosulfur compound dihydroxypropanesulfonate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 15599-15608	11.5	14
1	178	Unraveling the iterative type I polyketide synthases hidden in. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 8449-8454	11.5	15
1	177	A mass spectrometry-based high-throughput screening method for engineering fatty acid synthases with improved production of medium-chain fatty acids. <i>Biotechnology and Bioengineering</i> , 2020 , 117, 2131-2138	4.9	13
1	176	Integrating biocatalysis with chemocatalysis for selective transformations. <i>Current Opinion in Chemical Biology</i> , 2020 , 55, 161-170	9.7	44
1	175	A New Biosensor for Stilbenes and a Cannabinoid Enabled by Genome Mining of a Transcriptional Regulator. <i>ACS Synthetic Biology</i> , 2020 , 9, 698-705	5.7	9
1	174	Unleashing the power of energy storage: Engineering Ebxidation pathways for polyketide production. <i>Synthetic and Systems Biotechnology</i> , 2020 , 5, 21-22	4.2	1
1	173	A Pathway for Degradation of Uracil to Acetyl Coenzyme A in Bacillus megaterium. <i>Applied and Environmental Microbiology</i> , 2020 , 86,	4.8	6
1	172	A genetic toolbox for metabolic engineering of Issatchenkia orientalis. <i>Metabolic Engineering</i> , 2020 , 59, 87-97	9.7	14
1	171	Discovery and Characterization of a Class IV Lanthipeptide with a Nonoverlapping Ring Pattern. <i>ACS Chemical Biology</i> , 2020 , 15, 1642-1649	4.9	10

170	DNA punch cards for storing data on native DNA sequences via enzymatic nicking. <i>Nature Communications</i> , 2020 , 11, 1742	17.4	32
169	Recent advances in domesticating non-model microorganisms. <i>Biotechnology Progress</i> , 2020 , 36, e3008	2.8	10
168	Reconstruction of Lead Acid Battery Negative Electrodes after Hard Sulfation Using Controlled Chelation Chemistry. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 120537	3.9	1
167	Activation of Silent Natural Product Biosynthetic Gene Clusters Using Synthetic Biology Tools 2020 , 113	3-135	О
166	Emerging molecular biology tools and strategies for engineering natural product biosynthesis. <i>Metabolic Engineering Communications</i> , 2020 , 10, e00108	6.5	24
165	Identification and Characterization of Citrus Peel Uronic Acid Oxidase. <i>ChemBioChem</i> , 2020 , 21, 797-800	3.8	3
164	Computational Tools for Discovering and Engineering Natural Product Biosynthetic Pathways. <i>IScience</i> , 2020 , 23, 100795	6.1	21
163	Biosynthetic engineering of the antifungal, anti-MRSA auroramycin. <i>Microbial Cell Factories</i> , 2020 , 19, 3	6.4	2
162	An efficient gene knock-in strategy using 5Smodified double-stranded DNA donors with short homology arms. <i>Nature Chemical Biology</i> , 2020 , 16, 387-390	11.7	22
161	Stereoconvergent Reduction of Activated Alkenes by a Nicotinamide Free Synergistic Photobiocatalytic System. <i>ACS Catalysis</i> , 2020 , 10, 9431-9437	13.1	8
160	Photoenzymatic enantioselective intermolecular radical hydroalkylation. <i>Nature</i> , 2020 , 584, 69-74	50.4	72
159	Unlocking natures biosynthetic potential by directed genome evolution. <i>Current Opinion in Biotechnology</i> , 2020 , 66, 95-104	11.4	13
158	A transaldolase-dependent sulfoglycolysis pathway in Bacillus megaterium DSM 1804. <i>Biochemical and Biophysical Research Communications</i> , 2020 , 533, 1109-1114	3.4	10
157	Two-Color Imaging of Nonrepetitive Endogenous Loci in Human Cells. <i>ACS Synthetic Biology</i> , 2020 , 9, 2502-2514	5.7	1
156	Biosystems design by directed evolution. AICHE Journal, 2020, 66, e16716	3.6	17
155	An extended bacterial reductive pyrimidine degradation pathway that enables nitrogen release from Ealanine. <i>Journal of Biological Chemistry</i> , 2019 , 294, 15662-15671	5.4	7
154	A comprehensive genome-scale model for IFO0880 accounting for functional genomics and phenotypic data. <i>Metabolic Engineering Communications</i> , 2019 , 9, e00101	6.5	26
153	A Continuing Career in Biocatalysis: Frances H. Arnold. <i>ACS Catalysis</i> , 2019 , 9, 9775-9788	13.1	17

(2018-2019)

152	A gene cluster for taurine sulfur assimilation in an anaerobic human gut bacterium. <i>Biochemical Journal</i> , 2019 , 476, 2271-2279	3.8	6
151	Biochemical and structural investigation of sulfoacetaldehyde reductase from. <i>Biochemical Journal</i> , 2019 , 476, 733-746	3.8	8
150	A Pathway for Isethionate Dissimilation in Bacillus krulwichiae. <i>Applied and Environmental Microbiology</i> , 2019 , 85,	4.8	4
149	Identification and characterization of a new sulfoacetaldehyde reductase from the human gut bacterium. <i>Bioscience Reports</i> , 2019 , 39,	4.1	5
148	Building a global alliance of biofoundries. <i>Nature Communications</i> , 2019 , 10, 2040	17.4	91
147	Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes. <i>Biotechnology and Bioengineering</i> , 2019 , 116, 2330-2338	4.9	16
146	Biochemical and structural investigation of taurine:2-oxoglutarate aminotransferase from. <i>Biochemical Journal</i> , 2019 , 476, 1605-1619	3.8	5
145	Highly Efficient Single-Pot Scarless Golden Gate Assembly. ACS Synthetic Biology, 2019 , 8, 1047-1054	5.7	17
144	Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides. <i>Biotechnology and Bioengineering</i> , 2019 , 116, 2103-2109	4.9	22
143	Radical-mediated C-S bond cleavage in C2 sulfonate degradation by anaerobic bacteria. <i>Nature Communications</i> , 2019 , 10, 1609	17.4	22
142	Development of a CRISPR/Cas9-Based Tool for Gene Deletion in. <i>MSphere</i> , 2019 , 4,	5	16
141	Towards a fully automated algorithm driven platform for biosystems design. <i>Nature Communications</i> , 2019 , 10, 5150	17.4	45
140	Multi-functional genome-wide CRISPR system for high throughput genotype-phenotype mapping. <i>Nature Communications</i> , 2019 , 10, 5794	17.4	57
139	Activation of silent biosynthetic gene clusters using transcription factor decoys. <i>Nature Chemical Biology</i> , 2019 , 15, 111-114	11.7	51
138	Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 1630-1635	4.9	32
137	RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 1552-1560	4.9	10
136	Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. <i>Metabolic Engineering</i> , 2018 , 50, 85-108	9.7	147
135	In vivo biosensors: mechanisms, development, and applications. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2018 , 45, 491-516	4.2	41

134	Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production. <i>Critical Reviews in Biochemistry and Molecular Biology</i> , 2018 , 53, 115-129	8.7	28
133	Advancing Metabolic Engineering of Saccharomyces cerevisiae Using the CRISPR/Cas System. <i>Biotechnology Journal</i> , 2018 , 13, e1700601	5.6	34
132	Genome-wide identification of natural RNA aptamers in prokaryotes and eukaryotes. <i>Nature Communications</i> , 2018 , 9, 1289	17.4	24
131	Biocatalysis for the synthesis of pharmaceuticals and pharmaceutical intermediates. <i>Bioorganic and Medicinal Chemistry</i> , 2018 , 26, 1275-1284	3.4	115
130	Pathway Design, Engineering, and Optimization. <i>Advances in Biochemical Engineering/Biotechnology</i> , 2018 , 162, 77-116	1.7	7
129	A coupled chlorinase-fluorinase system with a high efficiency of trans-halogenation and a shared substrate tolerance. <i>Chemical Communications</i> , 2018 , 54, 9458-9461	5.8	10
128	Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. <i>Nature Biotechnology</i> , 2018 , 36, 505-508	44.5	97
127	Visualizing Spatiotemporal Dynamics of Intercellular Mechanotransmission upon Wounding. <i>ACS Photonics</i> , 2018 , 5, 3565-3574	6.3	6
126	Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. <i>Nature</i> , 2018 , 560, 355-359	50.4	140
125	CRISPR/Cas9-mediated knock-in of an optimized TetO repeat for live cell imaging of endogenous loci. <i>Nucleic Acids Research</i> , 2018 , 46, e100	20.1	29
124	Synthetic biology advances and applications in the biotechnology industry: a perspective. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2018 , 45, 449-461	4.2	38
123	Quantifying the effects of pollen nutrition on honey bee queen egg laying with a new laboratory system. <i>PLoS ONE</i> , 2018 , 13, e0203444	3.7	18
122	Indoleacetate decarboxylase is a glycyl radical enzyme catalysing the formation of malodorant skatole. <i>Nature Communications</i> , 2018 , 9, 4224	17.4	21
121	Insights into Cell-Free Conversion of CO2to Chemicals by a Multienzyme Cascade Reaction. <i>ACS Catalysis</i> , 2018 , 8, 11085-11093	13.1	54
120	Rapid Discovery of Glycocins through Pathway Refactoring in Escherichia coli. <i>ACS Chemical Biology</i> , 2018 , 13, 2966-2972	4.9	19
119	Rapid Screening of Lanthipeptide Analogs via In-Colony Removal of Leader Peptides in Escherichia coli. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11884-11888	16.4	13
118	Metabolic Engineering of Saccharomyces cerevisiae Using a Trifunctional CRISPR/Cas System for Simultaneous Gene Activation, Interference, and Deletion. <i>Methods in Enzymology</i> , 2018 , 608, 265-276	1.7	2
117	Auroramycin: A Potent Antibiotic from Streptomyces roseosporus by CRISPR-Cas9 Activation. <i>ChemBioChem</i> , 2018 , 19, 1716	3.8	28

(2017-2017)

116	Fully Automated One-Step Synthesis of Single-Transcript TALEN Pairs Using a Biological Foundry. <i>ACS Synthetic Biology</i> , 2017 , 6, 678-685	5.7	27
115	Orthogonal Genetic Regulation in Human Cells Using Chemically Induced CRISPR/Cas9 Activators. <i>ACS Synthetic Biology</i> , 2017 , 6, 686-693	5.7	29
114	A New Era of Genome Integration-Simply Cut and Paste!. ACS Synthetic Biology, 2017, 6, 601-609	5.7	28
113	Discovery of a Phosphonoacetic Acid Derived Natural Product by Pathway Refactoring. <i>ACS Synthetic Biology</i> , 2017 , 6, 217-223	5.7	15
112	Probing the molecular determinants of fluorinase specificity. <i>Chemical Communications</i> , 2017 , 53, 2559	-255662	16
111	A Scalable Epitope Tagging Approach for High Throughput ChIP-Seq Analysis. <i>ACS Synthetic Biology</i> , 2017 , 6, 1034-1042	5.7	12
110	Combining Rh-Catalyzed Diazocoupling and Enzymatic Reduction To Efficiently Synthesize Enantioenriched 2-Substituted Succinate Derivatives. <i>ACS Catalysis</i> , 2017 , 7, 2548-2552	13.1	27
109	Programmable DNA-Guided Artificial Restriction Enzymes. ACS Synthetic Biology, 2017, 6, 752-757	5.7	50
108	Inducible Control of mRNA Transport Using Reprogrammable RNA-Binding Proteins. <i>ACS Synthetic Biology</i> , 2017 , 6, 950-956	5.7	7
107	Using natural products for drug discovery: the impact of the genomics era. <i>Expert Opinion on Drug Discovery</i> , 2017 , 12, 475-487	6.2	58
106	CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. <i>Nature Chemical Biology</i> , 2017 ,	11.7	164
105	A plug-and-play pathway refactoring workflow for natural product research in Escherichia coli and Saccharomyces cerevisiae. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 1847-1854	4.9	22
104	Automated multiplex genome-scale engineering in yeast. <i>Nature Communications</i> , 2017 , 8, 15187	17.4	114
103	Engineering biological systems using automated biofoundries. <i>Metabolic Engineering</i> , 2017 , 42, 98-108	9.7	97
102	Twin-primer non-enzymatic DNA assembly: an efficient and accurate multi-part DNA assembly method. <i>Nucleic Acids Research</i> , 2017 , 45, e94	20.1	33
101	Breaking the silence: new strategies for discovering novel natural products. <i>Current Opinion in Biotechnology</i> , 2017 , 48, 21-27	11.4	76
100	Targeting Specificity of the CRISPR/Cas9 System. ACS Synthetic Biology, 2017, 6, 1609-1613	5.7	15
99	Profiling of Microbial Colonies for High-Throughput Engineering of Multistep Enzymatic Reactions via Optically Guided Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. <i>Journal of the American Chamical Society</i> 2017, 139, 13466-13473	16.4	35

98	Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. <i>Nature Communications</i> , 2017 , 8, 1688	17.4	164
97	Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae. <i>Bioresource Technology</i> , 2017 , 245, 1343-1351	11	31
96	Flexible and Versatile Strategy for the Construction of Large Biochemical Pathways. <i>ACS Synthetic Biology</i> , 2016 , 5, 46-52	5.7	13
95	TALE proteins search DNA using a rotationally decoupled mechanism. <i>Nature Chemical Biology</i> , 2016 , 12, 831-7	11.7	37
94	Directed Evolution of a Fluorinase for Improved Fluorination Efficiency with a Non-native Substrate. <i>Angewandte Chemie</i> , 2016 , 128, 14489-14492	3.6	13
93	A brief overview of synthetic biology research programs and roadmap studies in the United States. <i>Synthetic and Systems Biotechnology</i> , 2016 , 1, 258-264	4.2	18
92	High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System. <i>Methods in Enzymology</i> , 2016 , 575, 271-84	1.7	16
91	Metabolic engineering of a synergistic pathway for n-butanol production in Saccharomyces cerevisiae. <i>Scientific Reports</i> , 2016 , 6, 25675	4.9	38
90	Identification of an important motif that controls the activity and specificity of sugar transporters. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 1460-7	4.9	13
89	CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. <i>Microbial Cell Factories</i> , 2016 , 15, 115	6.4	136
88	Production of Adipic Acid from Sugar Beet Residue by Combined Biological and Chemical Catalysis. <i>ChemCatChem</i> , 2016 , 8, 1500-1506	5.2	38
87	Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering. <i>ACS Synthetic Biology</i> , 2016 , 5, 689-97	5.7	14
86	Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 206-15	4.9	52
85	A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. <i>Metabolic Engineering</i> , 2016 , 33, 19-27	9.7	134
84	Tandem Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis. <i>Catalysts</i> , 2016 , 6, 194	4	34
83	Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 2462-73	4.9	40
82	Combinatorial pathway engineering for optimized production of the anti-malarial FR900098. <i>Biotechnology and Bioengineering</i> , 2016 , 113, 384-92	4.9	14
81	Engineering microbial hosts for production of bacterial natural products. <i>Natural Product Reports</i> , 2016 , 33, 963-87	15.1	95

(2015-2016)

80	Characterization of Bacillus subtilis Colony Biofilms via Mass Spectrometry and Fluorescence Imaging. <i>Journal of Proteome Research</i> , 2016 , 15, 1955-62	5.6	22
79	Directed Evolution of a Fluorinase for Improved Fluorination Efficiency with a Non-native Substrate. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14277-14280	16.4	29
78	Accelerated genome engineering through multiplexing. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016 , 8, 5-21	6.6	15
77	Direct observation of TALE protein dynamics reveals a two-state search mechanism. <i>Nature Communications</i> , 2015 , 6, 7277	17.4	56
76	Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening. <i>ACS Synthetic Biology</i> , 2015 , 4, 1308-15	5.7	106
75	Development of a One-Pot Tandem Reaction Combining Ruthenium-Catalyzed Alkene Metathesis and Enantioselective Enzymatic Oxidation To Produce Aryl Epoxides. <i>ACS Catalysis</i> , 2015 , 5, 3817-3822	13.1	54
74	Recent advances in combinatorial biosynthesis for drug discovery. <i>Drug Design, Development and Therapy</i> , 2015 , 9, 823-33	4.4	40
73	Regulatory RNA-assisted genome engineering in microorganisms. <i>Current Opinion in Biotechnology</i> , 2015 , 36, 85-90	11.4	16
72	Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2015 , 42, 437-51	4.2	31
71	High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. <i>ACS Synthetic Biology</i> , 2015 , 4, 723-8	5.7	355
70	Rapid prototyping of microbial cell factories via genome-scale engineering. <i>Biotechnology Advances</i> , 2015 , 33, 1420-32	17.8	30
69	RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering. <i>ACS Synthetic Biology</i> , 2015 , 4, 283-91	5.7	63
68	High Throughput Screening and Selection Methods for Directed Enzyme Evolution. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 4011-4020	3.9	109
67	Reversal of the Ebxidation cycle in Saccharomyces cerevisiae for production of fuels and chemicals. <i>ACS Synthetic Biology</i> , 2015 , 4, 332-41	5.7	64
66	Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. <i>ACS Synthetic Biology</i> , 2015 , 4, 585-94	5.7	231
65	Recent advances in DNA assembly technologies. FEMS Yeast Research, 2015, 15, 1-9	3.1	85
64	A Rewritable, Random-Access DNA-Based Storage System. <i>Scientific Reports</i> , 2015 , 5, 14138	4.9	123
63	Building biological foundries for next-generation synthetic biology. <i>Science China Life Sciences</i> , 2015 , 58, 658-65	8.5	16

62	DNA-Based Storage: Trends and Methods. <i>IEEE Transactions on Molecular, Biological, and Multi-Scale Communications</i> , 2015 , 1, 230-248	2.3	93
61	Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae. <i>ACS Synthetic Biology</i> , 2015 , 4, 808-14	5.7	30
60	Improving and repurposing biocatalysts via directed evolution. <i>Current Opinion in Chemical Biology</i> , 2015 , 25, 55-64	9.7	199
59	SunnyTALEN: a second-generation TALEN system for human genome editing. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 683-91	4.9	20
58	Cooperative tandem catalysis by an organometallic complex and a metalloenzyme. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 465-9	16.4	115
57	DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2014 , 41, 469-77	4.2	47
56	Exploiting Issatchenkia orientalis SD108 for succinic acid production. <i>Microbial Cell Factories</i> , 2014 , 13, 121	6.4	46
55	Tandem Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural with an Immobilized Enzyme and a Solid Acid. <i>ACS Catalysis</i> , 2014 , 4, 2165-2168	13.1	84
54	Modular assembly of designer PUF proteins for specific post-transcriptional regulation of endogenous RNA. <i>Journal of Biological Engineering</i> , 2014 , 8, 7	6.3	40
53	Genome-wide RNAi screen reveals the E3 SUMO-protein ligase gene SIZ1 as a novel determinant of furfural tolerance in Saccharomyces cerevisiae. <i>Biotechnology for Biofuels</i> , 2014 , 7, 78	7.8	29
52	FairyTALE: a high-throughput TAL effector synthesis platform. ACS Synthetic Biology, 2014, 3, 67-73	5.7	33
51	Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. <i>Metabolic Engineering</i> , 2014 , 24, 139-49	9.7	154
50	Cooperative Tandem Catalysis by an Organometallic Complex and a Metalloenzyme. <i>Angewandte Chemie</i> , 2014 , 126, 475-479	3.6	38
49	Metabolic Engineering Strategies for Production of Commodity and Fine Chemicals: Escherichia coli as a Platform Organism 2014 , 591-604		
48	Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 1521-31	4.9	32
47	Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. <i>Metabolic Engineering</i> , 2014 , 23, 92-	.9 ^{9.7}	76
46	Directed evolution of a highly efficient cellobiose utilizing pathway in an industrial Saccharomyces cerevisiae strain. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 2874-81	4.9	31
45	Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins. <i>Microbial Cell Factories</i> , 2013 , 12, 61	6.4	45

(2011-2013)

44	Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. <i>ACS Synthetic Biology</i> , 2013 , 2, 662-9	5.7	120
43	Multistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis. <i>ACS Catalysis</i> , 2013 , 3, 2856-2864	13.1	177
42	Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. <i>Microbial Cell Factories</i> , 2013 , 12, 114	6.4	41
41	Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 931-41	4.8	70
40	Directed evolution as a powerful synthetic biology tool. <i>Methods</i> , 2013 , 60, 81-90	4.6	85
39	Customized optimization of metabolic pathways by combinatorial transcriptional engineering. <i>Methods in Molecular Biology</i> , 2013 , 985, 177-209	1.4	10
38	Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 1811-21	4.9	167
37	Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. <i>Nature Communications</i> , 2013 , 4, 2894	17.4	165
36	Directed Evolution: Past, Present and Future. AICHE Journal, 2013, 59, 1432-1440	3.6	93
35	Biocatalyst development by directed evolution. <i>Bioresource Technology</i> , 2012 , 115, 117-25	11	102
34	Customized optimization of metabolic pathways by combinatorial transcriptional engineering. <i>Nucleic Acids Research</i> , 2012 , 40, e142	20.1	193
34		20.1	193 27
	Nucleic Acids Research, 2012, 40, e142 DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene		
33	Nucleic Acids Research, 2012, 40, e142 DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters. Methods in Enzymology, 2012, 517, 203-24 Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Molecular		27
33	Nucleic Acids Research, 2012, 40, e142 DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters. Methods in Enzymology, 2012, 517, 203-24 Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Molecular BioSystems, 2012, 8, 1255-63 Recent advances in targeted genome engineering in mammalian systems. Biotechnology Journal,	1.7	27
33 32 31	Nucleic Acids Research, 2012, 40, e142 DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters. Methods in Enzymology, 2012, 517, 203-24 Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Molecular BioSystems, 2012, 8, 1255-63 Recent advances in targeted genome engineering in mammalian systems. Biotechnology Journal, 2012, 7, 1074-87 Cloning and characterization of a panel of constitutive promoters for applications in pathway	1.7 5.6	27 112 41
33 32 31 30	Nucleic Acids Research, 2012, 40, e142 DNA assembler: a synthetic biology tool for characterizing and engineering natural product gene clusters. Methods in Enzymology, 2012, 517, 203-24 Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Molecular BioSystems, 2012, 8, 1255-63 Recent advances in targeted genome engineering in mammalian systems. Biotechnology Journal, 2012, 7, 1074-87 Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2012, 109, 2082-92 Rapid characterization and engineering of natural product biosynthetic pathways via DNA	1.7 5.6	27 112 41 140

26	Temperature and strain-rate dependent fracture strength of graphene. <i>Journal of Applied Physics</i> , 2010 , 108, 064321	2.5	258
25	Deciphering the late biosynthetic steps of antimalarial compound FR-900098. <i>Chemistry and Biology</i> , 2010 , 17, 57-64		27
24	Size and surface orientation effects on thermal expansion coefficient of one-dimensional silicon nanostructures. <i>Journal of Applied Physics</i> , 2009 , 105, 104309	2.5	12
23	Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. <i>Nano Letters</i> , 2009 , 9, 3012-5	11.5	653
22	DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. <i>Nucleic Acids Research</i> , 2009 , 37, e16	20.1	489
21	Evolution in reverse: engineering a D-xylose-specific xylose reductase. <i>ChemBioChem</i> , 2008 , 9, 1213-5	3.8	46
20	Cloning, expression, and biochemical characterization of Streptomyces rubellomurinus genes required for biosynthesis of antimalarial compound FR900098. <i>Chemistry and Biology</i> , 2008 , 15, 765-70		70
19	High-throughput Screening Methods Developed for Oxidoreductases 2006 , 77-93		8
18	Rapid creation of a novel protein function by in vitro coevolution. <i>Journal of Molecular Biology</i> , 2005 , 348, 1273-82	6.5	41
17	Directed evolution of specific receptor-ligand pairs for use in the creation of gene switches. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 5691-6	11.5	82
16	Outrunning Nature: Directed Evolution of Superior Biocatalysts. <i>Journal of Chemical Education</i> , 2004 , 81, 126	2.4	11
15	A pH-indicator-based screen for hydrolytic haloalkane dehalogenase. <i>Methods in Molecular Biology</i> , 2003 , 230, 213-21	1.4	8
14	Recent developments in pyridine nucleotide regeneration. <i>Current Opinion in Biotechnology</i> , 2003 , 14, 421-6	11.4	327
13	Directed evolution of enzymes and pathways for industrial biocatalysis. <i>Current Opinion in Biotechnology</i> , 2002 , 13, 104-10	11.4	140
12	Directed evolution converts subtilisin E into a functional equivalent of thermitase. <i>Protein Engineering, Design and Selection</i> , 1999 , 12, 47-53	1.9	241
11	Directed evolution of mesophilic enzymes into their thermophilic counterparts. <i>Annals of the New York Academy of Sciences</i> , 1999 , 870, 400-3	6.5	26
10	Molecular evolution by staggered extension process (StEP) in vitro recombination. <i>Nature Biotechnology</i> , 1998 , 16, 258-61	44.5	605
9	Random-priming in vitro recombination: an effective tool for directed evolution. <i>Nucleic Acids Research</i> , 1998 , 26, 681-3	20.1	149

LIST OF PUBLICATIONS

8	Optimization of DNA shuffling for high fidelity recombination. <i>Nucleic Acids Research</i> , 1997 , 25, 1307-8 20.1	167
7	Functional and nonfunctional mutations distinguished by random recombination of homologous genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1997 , 94, 7997- 8000^{5}	56
6	Sustainable Production of Acrylic Acid via 3-Hydroxypropionic Acid from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 8.3	6
5	Mechanistically Diverse Pathways for Sulfoquinovose Degradation in Bacteria. <i>ACS Catalysis</i> ,14740-1475 $\mathfrak{D}_{\mathfrak{Z},\mathfrak{I}}$	4
4	DNA Punch Cards: Storing Data on Native DNA Sequences via Nicking	1
3	Evolutionary context-integrated deep sequence modeling for protein engineering	8
2	CRISPR/Cas9-mediated Knock-in of an Optimized TetO Repeat for Live Cell Imaging of Endogenous Loci	1
1	In Vivo Biosensors for Directed Protein Evolution29-55	