
## Kathrin Thedieck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735330/publications.pdf Version: 2024-02-01



KATHDIN THEDIECK

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Nature Communications, 2022, 13, .                                                                                                              | 12.8 | 23        |
| 2  | Fine-Tuning Cardiac Insulin-Like Growth Factor 1 Receptor Signaling to Promote Health and Longevity.<br>Circulation, 2022, 145, 1853-1866.                                                                             | 1.6  | 29        |
| 3  | G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Cell, 2021, 184, 655-674.e27.                                                                                                                 | 28.9 | 65        |
| 4  | Finding new edges: systems approaches to MTOR signaling. Biochemical Society Transactions, 2021, 49, 41-54.                                                                                                            | 3.4  | 4         |
| 5  | Combined Metabolic and Chemical (CoMetChem) Labeling Using Stable Isotopes—a Strategy to Reveal<br>Site-Specific Histone Acetylation and Deacetylation Rates by LC–MS. Analytical Chemistry, 2021, 93,<br>12872-12880. | 6.5  | 2         |
| 6  | The SZT2 Interactome Unravels New Functions of the KICSTOR Complex. Cells, 2021, 10, 2711.                                                                                                                             | 4.1  | 7         |
| 7  | mTORC1 Crosstalk With Stress Granules in Aging and Age-Related Diseases. Frontiers in Aging, 2021, 2, .                                                                                                                | 2.6  | 9         |
| 8  | The TSC Complex-mTORC1 Axis: From Lysosomes to Stress Granules and Back. Frontiers in Cell and Developmental Biology, 2021, 9, 751892.                                                                                 | 3.7  | 22        |
| 9  | Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy, 2020, 16, 1932-1948.                                                                                                       | 9.1  | 69        |
| 10 | IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell, 2020, 182, 1252-1270.e34.                                                                                          | 28.9 | 259       |
| 11 | Breaking the Interface: Efficient Extraction of Magnetic Beads from Nanoliter Droplets for Automated<br>Sequential Immunoassays. Analytical Chemistry, 2020, 92, 10283-10290.                                          | 6.5  | 9         |
| 12 | Partially non-homogeneous dynamic Bayesian networks based on Bayesian regression models with partitioned design matrices. Bioinformatics, 2019, 35, 2108-2117.                                                         | 4.1  | 9         |
| 13 | Tomatidine, a novel antiviral compound towards dengue virus. Antiviral Research, 2019, 161, 90-99.                                                                                                                     | 4.1  | 51        |
| 14 | The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Life Science Alliance, 2019, 2, e201800257.                                                                                   | 2.8  | 49        |
| 15 | TGFÎ <sup>2</sup> -Signaling and FOXG1-Expression Are a Hallmark of Astrocyte Lineage Diversity in the Murine<br>Ventral and Dorsal Forebrain. Frontiers in Cellular Neuroscience, 2018, 12, 448.                      | 3.7  | 10        |
| 16 | CGEF-1 regulates mTORC1 signaling during adult longevity and stress response in <i>C. elegans</i> .<br>Oncotarget, 2018, 9, 9581-9595.                                                                                 | 1.8  | 7         |
| 17 | Upregulation of tryptophanyl-tRNA synthethase adapts human cancer cells to nutritional stress caused by tryptophan degradation. Oncolmmunology, 2018, 7, e1486353.                                                     | 4.6  | 62        |
| 18 | PLK1 (polo like kinase 1) inhibits MTOR complex 1 and promotes autophagy. Autophagy, 2017, 13, 486-505.                                                                                                                | 9.1  | 63        |

KATHRIN THEDIECK

| #  | Article                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. Journal of Cell Biology, 2017, 216, 1567-1577.                                                                                  | 5.2  | 29        |
| 20 | Differential control of ageing and lifespan by isoforms and splice variants across the mTOR network.<br>Essays in Biochemistry, 2017, 61, 349-368.                                                                                    | 4.7  | 10        |
| 21 | Tumor-Intrinsic PD-L1 Signals Regulate Cell Growth, Pathogenesis, and Autophagy in Ovarian Cancer and Melanoma. Cancer Research, 2016, 76, 6964-6974.                                                                                 | 0.9  | 294       |
| 22 | A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nature Communications, 2016, 7, 13254.                                                                                                                 | 12.8 | 113       |
| 23 | TSC1 Activates TGF-β-Smad2/3 Signaling in Growth Arrest and Epithelial-to-Mesenchymal Transition.<br>Developmental Cell, 2015, 32, 617-630.                                                                                           | 7.0  | 54        |
| 24 | Functional Proteomics Identifies Acinus L as a Direct Insulin- and Amino Acid-Dependent Mammalian<br>Target of Rapamycin Complex 1 (mTORC1) Substrate. Molecular and Cellular Proteomics, 2015, 14,<br>2042-2055.                     | 3.8  | 18        |
| 25 | Molecular mechanisms of mTOR regulation by stress. Molecular and Cellular Oncology, 2015, 2, e970489.                                                                                                                                 | 0.7  | 62        |
| 26 | PI3Kâ€p110â€alphaâ€subtype signalling mediates survival, proliferation and neurogenesis of cortical progenitor cells via activation of <scp>mTORC</scp> 2. Journal of Neurochemistry, 2014, 130, 255-267.                             | 3.9  | 55        |
| 27 | T cell receptor-mediated activation is a potent inducer of macroautophagy in human CD8+CD28+ T<br>cells but not in CD8+CD28â^² T cells. Experimental Gerontology, 2014, 54, 75-83.                                                    | 2.8  | 45        |
| 28 | Inhibition of mTORC1 by Astrin and Stress Granules Prevents Apoptosis in Cancer Cells. Cell, 2013, 154, 859-874.                                                                                                                      | 28.9 | 243       |
| 29 | Response to Comment on "A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent<br>mTORC2 Regulation― Building a Model of the mTOR Signaling Network with a Potentially Faulty Tool.<br>Science Signaling, 2012, 5, .       | 3.6  | 1         |
| 30 | A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation. Science Signaling, 2012, 5, ra25.                                                                                                                | 3.6  | 120       |
| 31 | A modelling–experimental approach reveals insulin receptor substrate (IRS)â€dependent regulation of<br>adenosine monosphosphateâ€dependent kinase (AMPK) by insulin. FEBS Journal, 2012, 279, 3314-3328.                              | 4.7  | 45        |
| 32 | Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis. Hepatology, 2011, 53, 875-884.                                                                                  | 7.3  | 143       |
| 33 | Translational Control by Amino Acids and Energy. , 2010, , 2285-2293.                                                                                                                                                                 |      | 3         |
| 34 | Proteins induced by telomere dysfunction and DNA damage represent biomarkers of human aging and<br>disease. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105,<br>11299-11304.               | 7.1  | 151       |
| 35 | PRAS40 and PRR5-Like Protein Are New mTOR Interactors that Regulate Apoptosis. PLoS ONE, 2007, 2, e1217.                                                                                                                              | 2.5  | 248       |
| 36 | The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers<br>resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Molecular<br>Microbiology, 2006, 62, 1325-1339. | 2.5  | 181       |