List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6735277/publications.pdf Version: 2024-02-01

LUDE FITZCIBRON

#	Article	IF	CITATIONS
1	Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nature Genetics, 2014, 46, 176-181.	21.4	624
2	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	28.9	404
3	BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology, 2012, 30, 224-226.	17.5	323
4	Mutation ofCEBPAin Familial Acute Myeloid Leukemia. New England Journal of Medicine, 2004, 351, 2403-2407.	27.0	295
5	EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood, 2013, 122, 3165-3168.	1.4	274
6	Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood, 2008, 112, 4639-4645.	1.4	222
7	Association between Acquired Uniparental Disomy and Homozygous Gene Mutation in Acute Myeloid Leukemias. Cancer Research, 2005, 65, 9152-9154.	0.9	221
8	Mutation of the Wilms' Tumor 1 Gene Is a Poor Prognostic Factor Associated With Chemotherapy Resistance in Normal Karyotype Acute Myeloid Leukemia: The United Kingdom Medical Research Council Adult Leukaemia Working Party. Journal of Clinical Oncology, 2008, 26, 5429-5435.	1.6	185
9	Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood, 2009, 114, 826-834.	1.4	177
10	Transformation of Indolent B-Cell Lymphomas. Journal of Clinical Oncology, 2011, 29, 1827-1834.	1.6	164
11	Paralogy Mapping: Identification of a Region in the Human MHC Triplicated onto Human Chromosomes 1 and 9 Allows the Prediction and Isolation of NovelPBXandNOTCHLoci. Genomics, 1996, 35, 101-108.	2.9	161
12	Recurrent mTORC1-activating RRAGC mutations in follicular lymphoma. Nature Genetics, 2016, 48, 183-188.	21.4	160
13	Familial myelodysplasia and acute myeloid leukaemia – a review. British Journal of Haematology, 2008, 140, 123-132.	2.5	159
14	Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood, 2015, 126, 1214-1223.	1.4	157
15	Follicular lymphoma. Nature Reviews Disease Primers, 2019, 5, 83.	30.5	148
16	Transformation of follicular lymphoma to diffuse large B-cell lymphoma proceeds by distinct oncogenic mechanisms. British Journal of Haematology, 2007, 136, 286-293.	2.5	142
17	Frequency of the <i>Bcl-2/IgH</i> Rearrangement in Normal Individuals: Implications for the Monitoring of Disease in Patients With Follicular Lymphoma. Journal of Clinical Oncology, 2001, 19, 420-424.	1.6	137
18	EZH2 Y641 mutations in follicular lymphoma. Leukemia, 2011, 25, 726-729.	7.2	132

#	Article	IF	CITATIONS
19	Spectral tuning and molecular evolution of rod visual pigments in the species flock of cottoid fish in Lake Baikal. Vision Research, 1996, 36, 1217-1224.	1.4	129
20	A novel K509I mutation of KIT identified in familial mastocytosis—in vitro and in vivo responsiveness to imatinib therapy. Leukemia Research, 2006, 30, 373-378.	0.8	129
21	Transformation of follicular lymphoma to diffuse large B-cell lymphoma may occur by divergent evolution from a common progenitor cell or by direct evolution from the follicular lymphoma clone. Blood, 2009, 113, 3553-3557.	1.4	129
22	The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood, 2008, 112, 3126-3129.	1.4	112
23	Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood, 2014, 123, 1681-1690.	1.4	110
24	Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death and Disease, 2012, 3, e342-e342.	6.3	107
25	A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma. Genome Medicine, 2014, 6, 105.	8.2	106
26	Mutations ofCEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosomes and Cancer, 2003, 37, 72-78.	2.8	98
27	Segmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia. Blood, 2008, 112, 814-821.	1.4	97
28	Wilms' tumour 1 mutations are associated with FLT3-ITD and failure of standard induction chemotherapy in patients with normal karyotype AML. Leukemia, 2007, 21, 550-551.	7.2	88
29	The co-receptor BTLA negatively regulates human Vγ9Vδ2 T-cell proliferation: a potential way of immune escape for lymphoma cells. Blood, 2013, 122, 922-931.	1.4	87
30	Genomic profiling reveals spatial intra-tumor heterogeneity in follicular lymphoma. Leukemia, 2018, 32, 1261-1265.	7.2	87
31	Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica, 2012, 97, 890-894.	3.5	85
32	DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation. American Journal of Human Genetics, 2016, 99, 115-124.	6.2	85
33	Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma. Blood, 2016, 128, 2666-2670.	1.4	82
34	The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nature Communications, 2020, 11, 1044.	12.8	81
35	Genome-wide detection of recurring sites of uniparental disomy in follicular and transformed follicular lymphoma. Leukemia, 2007, 21, 1514-1520.	7.2	78
36	The rhodopsin-encoding gene of bony fish lacks introns. Gene, 1995, 164, 273-277.	2.2	77

#	Article	IF	CITATIONS
37	MicroRNA profiles of t(14;18)–negative follicular lymphoma support a late germinal center B-cell phenotype. Blood, 2011, 118, 5550-5558.	1.4	77
38	Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation. Blood, 2009, 113, 2298-2301.	1.4	75
39	AZD1152 Rapidly and Negatively Affects the Growth and Survival of Human Acute Myeloid Leukemia Cells <i>In vitro</i> and <i>In vivo</i> . Cancer Research, 2009, 69, 4150-4158.	0.9	72
40	Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma. Cancer Research, 2016, 76, 4861-4871.	0.9	72
41	Drug ranking using machine learning systematically predicts the efficacy of anti-cancer drugs. Nature Communications, 2021, 12, 1850.	12.8	68
42	Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC/BCL2 double-hit. Leukemia, 2020, 34, 1329-1341.	7.2	66
43	Array-based DNA methylation profiling in follicular lymphoma. Leukemia, 2009, 23, 1858-1866.	7.2	65
44	Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukemia. Leukemia, 2016, 30, 2083-2086.	7.2	62
45	A limited role for TP53 mutation in the transformation of follicular lymphoma to diffuse large B-cell lymphoma. Leukemia, 2005, 19, 1459-1465.	7.2	58
46	Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia. Oncogene, 2005, 24, 3678-3683.	5.9	58
47	Early loss of Crebbp confers malignant stem cell properties on lymphoid progenitors. Nature Cell Biology, 2017, 19, 1093-1104.	10.3	58
48	Presentation Serum Selenium Predicts for Overall Survival, Dose Delivery, and First Treatment Response in Aggressive Non-Hodgkin's Lymphoma. Journal of Clinical Oncology, 2003, 21, 2335-2341.	1.6	56
49	Familial CEBPA -mutated acute myeloid leukemia. Seminars in Hematology, 2017, 54, 87-93.	3.4	54
50	GATA2 monoallelic expression underlies reduced penetrance in inherited GATA2-mutated MDS/AML. Leukemia, 2018, 32, 2502-2507.	7.2	48
51	Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. Journal of Clinical Investigation, 2020, 130, 3038-3050.	8.2	48
52	<i><scp>GATA</scp>2</i> mutations in sporadic and familial acute myeloid leukaemia patients with <i><scp>CEBPA</scp></i> mutations. British Journal of Haematology, 2013, 161, 701-705.	2.5	47
53	Isolation and Chromosomal Localization of Two Human CDP-diacylglycerol Synthase (CDS) Genes. Genomics, 1998, 54, 140-144.	2.9	44
54	Chemosensitization of B-Cell Lymphomas by Methylseleninic Acid Involves Nuclear Factor-κB Inhibition and the Rapid Generation of Other Selenium Species. Cancer Research, 2007, 67, 10984-10992.	0.9	41

#	Article	IF	CITATIONS
55	Evaluation of the m7-FLIPI in Patients with Follicular Lymphoma Treated within the Gallium Trial: EZH2 mutation Status May be a Predictive Marker for Differential Efficacy of Chemotherapy. Blood, 2019, 134, 122-122.	1.4	41
56	Localisation of a novel region of recurrent amplification in follicular lymphoma to an ?6.8 Mb region of 13q32-33. Genes Chromosomes and Cancer, 2001, 32, 236-243.	2.8	40
5 7	Oncogenic Rag GTPase signalling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nature Metabolism, 2019, 1, 775-789.	11.9	40
58	Molecular Evolution of the Cottoid Fish Endemic to Lake Baikal Deduced from Nuclear DNA Evidence. Molecular Phylogenetics and Evolution, 1997, 8, 415-422.	2.7	39
59	The clinical relevance of <i>Wilms Tumour 1</i> (<i>WT1</i>) gene mutations in acute leukaemia. Hematological Oncology, 2010, 28, 13-19.	1.7	38
60	Proteomic and genomic integration identifies kinase and differentiation determinants of kinase inhibitor sensitivity in leukemia cells. Leukemia, 2018, 32, 1818-1822.	7.2	36
61	The activity of methylated and non-methylated selenium species in lymphoma cell lines and primary tumours. Annals of Oncology, 2006, 17, 773-779.	1.2	35
62	KDM5 inhibition offers a novel therapeutic strategy for the treatment of <i>KMT2D</i> mutant lymphomas. Blood, 2021, 138, 370-381.	1.4	33
63	Follicular lymphoma, a B cell malignancy addicted to epigenetic mutations. Epigenetics, 2017, 12, 370-377.	2.7	31
64	TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses. Blood, 2016, 128, 72-81.	1.4	29
65	The RUNX1 database (RUNX1db): establishment of an expert curated RUNX1 registry and genomics database as a public resource for familial platelet disorder with myeloid malignancy. Haematologica, 2021, 106, 3004-3007.	3.5	29
66	The molecular pathogenesis of the NUP98-HOXA9 fusion protein in acute myeloid leukemia. Leukemia, 2017, 31, 2000-2005.	7.2	28
67	Mutant CEBPA directly drives the expression of the targetable tumor-promoting factor CD73 in AML. Science Advances, 2019, 5, eaaw4304.	10.3	28
68	High Throughput Sequencing Analysis of the Immunoglobulin Heavy Chain Gene from Flow-Sorted B Cell Sub-Populations Define the Dynamics of Follicular Lymphoma Clonal Evolution. PLoS ONE, 2015, 10, e0134833.	2.5	28
69	Highly variable clinical manifestations in a large family with a novel GATA2 mutation. Leukemia, 2013, 27, 2247-2248.	7.2	27
70	Tumour necrosis factor polymorphisms and susceptibility to follicular lymphoma. British Journal of Haematology, 1999, 107, 388-391.	2.5	25
71	Development of a human acute myeloid leukaemia screening panel and consequent identification of novel gene mutation in FLT3 and CCND3. British Journal of Haematology, 2005, 128, 318-323.	2.5	25
72	Mutation of BRAF is uncommon in AML FAB type M1 and M2. Leukemia, 2003, 17, 274-275.	7.2	23

#	Article	IF	CITATIONS
73	Overexpression of wild-type or mutants forms of CEBPA alter normal human hematopoiesis. Leukemia, 2012, 26, 1537-1546.	7.2	23
74	Inherited DDX41 mutations: 11 genes and counting. Blood, 2016, 127, 960-961.	1.4	21
75	Serum selenium concentration at diagnosis and outcome in patients with haematological malignancies. British Journal of Haematology, 2011, 154, 448-456.	2.5	20
76	Epigenetic dysregulation in follicular lymphoma. Epigenomics, 2016, 8, 77-84.	2.1	20
77	Localisation of the human blue cone pigment gene to chromosome band 7q31.3-32. Human Genetics, 1994, 93, 79-80.	3.8	18
78	Clinical relevance of MDM2 SNP 309 and TP53 Arg72Pro in follicular lymphoma. Haematologica, 2009, 94, 148-150.	3.5	18
79	Human guanylate kinase (GUK1): cDNA sequence, expression and chromosomal localisation. FEBS Letters, 1996, 385, 185-188.	2.8	17
80	SNP rs6457327 in the HLA region on chromosome 6p is predictive of the transformation of follicular lymphoma. Blood, 2011, 117, 3147-3150.	1.4	17
81	AML through the prism of molecular genetics. British Journal of Haematology, 2020, 188, 49-62.	2.5	17
82	Genome-wide association study identifies susceptibility loci for acute myeloid leukemia. Nature Communications, 2021, 12, 6233.	12.8	17
83	Reliable detection of clonal IgH/Bcl2 MBR rearrangement in follicular lymphoma: methodology and clinical significance. British Journal of Haematology, 2004, 124, 325-328.	2.5	16
84	Development of a quantitative real-time polymerase chain reaction method for monitoring CEBPA mutations in normal karyotype acute myeloid leukaemia. British Journal of Haematology, 2006, 133, 060203080756008.	2.5	16
85	The routes for transformation of follicular lymphoma. Current Opinion in Hematology, 2016, 23, 385-391.	2.5	16
86	Homozygous OB-fold variants in telomere protein TPP1 are associated with dyskeratosis congenita–like phenotypes. Blood, 2018, 132, 1349-1353.	1.4	16
87	Mapping of RXRB to human chromosome 6p21. 3. Annals of Human Genetics, 1993, 57, 203-209.	0.8	15
88	The relative role of peripheral blood and bone marrow for monitoring molecular evidence of disease in follicular lymphoma by quantitative real-time polymerase chain reaction. British Journal of Haematology, 2002, 118, 563-566.	2.5	15
89	Functional Analysis of a Breast Cancer-Associated FGFR2 Single Nucleotide Polymorphism Using Zinc Finger Mediated Genome Editing. PLoS ONE, 2013, 8, e78839.	2.5	14
90	A novel <i>RUNX1</i> mutation in a kindred with familial platelet disorder with propensity to acute myeloid leukaemia: male predominance of affected individuals. European Journal of Haematology, 2010, 85, 552-553.	2.2	13

#	Article	IF	CITATIONS
91	Recurrent somatic JAK-STAT pathway variants within a RUNX1-mutated pedigree. European Journal of Human Genetics, 2017, 25, 1020-1024.	2.8	13
92	Chromosomal localization of three mouse diacylglycerol kinase (DAGK) genes: genes sharing sequence homology to the Drosophila retinal degeneration A (rdgA) gene. Genomics, 1995, 26, 599-601.	2.9	12
93	JH probe real-time quantitative polymerase chain reaction assay for Bcl-2/IgH rearrangements. British Journal of Haematology, 2002, 118, 550-558.	2.5	12
94	The Activity of the Novel Aurora Kinase B Inhibitor AZD1152 in Acute Myeloid Leukaemia Cells Blood, 2005, 106, 3374-3374.	1.4	12
95	Sequential Time-Point Mutational Analysis of TP53 in Follicular Lymphoma Undergoing Transformation to Large B-Cell Lymphoma Blood, 2004, 104, 1361-1361.	1.4	12
96	Follicular lymphoma: Stateâ€ofâ€ŧheâ€art ICML workshop in Lugano 2015. Hematological Oncology, 2017, 35, 397-407.	1.7	11
97	WTX is rarely mutated in acute myeloid leukemia. Haematologica, 2008, 93, 947-948.	3.5	10
98	Cosmid Contigs Spanning 9q34 Including the Candidate Region forTSCI. European Journal of Human Genetics, 1995, 3, 65-77.	2.8	9
99	Localization of the gene encoding human phosphatidylinositol transfer protein (PITPN) to 17p13.3: a gene showing homology to the <i>Drosophila retinal</i> degeneration B gene (<i>rdgB</i>). Cytogenetic and Genome Research, 1994, 67, 205-207.	1.1	8
100	Molecular signatures in the diagnosis and management of follicular lymphoma. Current Opinion in Hematology, 2010, 17, 333-340.	2.5	8
101	Precision medicine and lymphoma. Current Opinion in Hematology, 2018, 25, 329-334.	2.5	8
102	Acquired somatic variants in inherited myeloid malignancies. Leukemia, 2022, 36, 1377-1381.	7.2	8
103	CKS1 inhibition depletes leukemic stem cells and protects healthy hematopoietic stem cells in acute myeloid leukemia. Science Translational Medicine, 2022, 14, .	12.4	8
104	Localization of the retinoid X receptor alpha gene (RXRA) to chromosome 9q34. Annals of Human Genetics, 1993, 57, 195-201.	0.8	7
105	Investigational epigenetically targeted drugs in early phase trials for the treatment of haematological malignancies. Expert Opinion on Investigational Drugs, 2014, 23, 1321-1332.	4.1	7
106	Mutations in the runt homology domain of CBFα2 in myeloid malignancies with acquired trisomy 21. Cancer Genetics and Cytogenetics, 2002, 136, 151-152.	1.0	6
107	Regional Localization of 64 Cosmid Contigs, Including 18 Genes and 14 Markers, to Intervals on Human Chromosome 9q34. Genomics, 1995, 29, 257-260.	2.9	5
108	Clinical utility gene card for: Familial platelet disorder with associated myeloid malignancies. European Journal of Human Genetics, 2016, 24, 3-4.	2.8	5

#	Article	IF	CITATIONS
109	Transmission of diffuse large B-cell lymphoma by an allogeneic stem-cell transplant. Haematologica, 2019, 104, e174-e177.	3.5	5
110	Genetic heterogeneity highlighted by differential FDG-PET response in diffuse large B-cell lymphoma. Haematologica, 2020, 105, 318-321.	3.5	5
111	Myeloblative therapy with autologous haematopoietic stem cell support as consolidation of first remission in acute myeloid leukaemia – very long followâ€up. British Journal of Haematology, 2014, 167, 724-726.	2.5	4
112	The Biological Basis of Histologic Transformation. Hematology/Oncology Clinics of North America, 2020, 34, 771-784.	2.2	4
113	A dual role for the RNA helicase DHX34 in NMD and pre-mRNA splicing and its function in hematopoietic differentiation. Rna, 0, , rna.079277.122.	3.5	4
114	Advances in the molecular diagnosis of diffuse large B-cell lymphoma in the era of precision medicine. Expert Review of Molecular Diagnostics, 2016, 16, 1093-1102.	3.1	3
115	Familial follicular lymphoma: A Case Report with Molecular Analysis. British Journal of Haematology, 2000, 110, 744-745.	2.5	2
116	Pediatric-type FL: simply different. Blood, 2016, 128, 1030-1031.	1.4	2
117	A frameshift variant in specificity protein 1 triggers superactivation of Sp1-mediated transcription in familial bone marrow failure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17151-17155.	7.1	2
118	Localisation of the gene encoding diacylglycerol kinase 3 (DAGK3) to human chromosome 3q27-28 and mouse chromosome 16. Current Eye Research, 1995, 14, 1041-1043.	1.5	1
119	It's a targeted world in non-Hodgkin's lymphoma. British Journal of Nursing, 2011, 20, S28-S28.	0.7	1
120	Predicting early relapse in follicular lymphoma: have we turned a corner?. Lancet Oncology, The, 2018, 19, 441-442.	10.7	1
121	Identification of Recurrent Mutations in the microRNA-Binding Sites of B-Cell Lymphoma-Associated Genes in Follicular Lymphoma. International Journal of Molecular Sciences, 2020, 21, 8795.	4.1	1
122	Drosophila Visual Transduction, a Model System For Human Eye Disease?. , 1995, , 255-261.		1
123	Tissue Microarray Is a Useful Tool in the Evaluation of Genes Implicated in Transformation of Follicular Lymphoma Blood, 2004, 104, 2267-2267.	1.4	1
124	Early Loss of CREBBP Confers Malignant Stem Cell Properties on Lymphoid Progenitors. Blood, 2016, 128, 460-460.	1.4	1
125	An EZH2 Gene Expression Signature Is Predictive of Differential Efficacy of Chemotherapy Irrespective of EZH2 Mutation Status in Patients with Follicular Lymphoma Treated within the Gallium Trial. Blood, 2021, 138, 39-39.	1.4	1
126	KDM4C in GC lymphoma: a new piece of the epigenetic puzzle. Haematologica, 2022, , .	3.5	1

#	Article	IF	CITATIONS
127	5. Follicular lymphoma. , 2016, , 75-100.		Ο
128	Proteomic and genomic integration identifies kinase and differentiation determinants of kinase inhibitor sensitivity in leukemia cells. Leukemia, 2017, , .	7.2	0
129	Rituximab as a first step in tackling transformation. Lancet Haematology,the, 2018, 5, e326-e327.	4.6	Ο
130	Recent Advancements in Hematology: Knowledge, Methods and Dissemination, Part 1. Hemato, 2020, 1, 10-22.	0.6	0
131	Recent Advancements in Hematology: Knowledge, Methods and Dissemination. Hemato, 2020, 1, 5-6.	0.6	Ο
132	Molecular Genetics in Indolent Lymphomas. Hematologic Malignancies, 2021, , 5-20.	0.2	0
133	Germline ETV6 variants: not ALL created equally. Blood, 2021, 137, 288-289.	1.4	Ο
134	Generation and Surgical Analysis of to Study NF-κB-Driven Pathogenesis of Diffuse Large B Cell Lymphoma. Methods in Molecular Biology, 2021, 2366, 321-342.	0.9	0
135	The Induction of Apoptosis in Lymphoma Cells by Methylseleninic Acid and Selenodiglutathione Blood, 2004, 104, 2502-2502.	1.4	Ο
136	Mutation of CEBPA in Familial Acute Myeloid Leukaemia Blood, 2004, 104, 2012-2012.	1.4	0
137	Development of a Human Acute Myeloid Leukaemia Screening Panel and Identification of Novel Gene Mutations Blood, 2004, 104, 2991-2991.	1.4	Ο
138	Flow Cytometric FLT3 Expression in Acute Leukaemias Is of Diagnostic Value but Does Not Correlate with ITD / D835Y Mutation Status Blood, 2004, 104, 3014-3014.	1.4	0
139	Methylseleninic Acid Results in Rapid Changes in Intracellular Selenium Species and Sensitises Human Lymphoma Cells to Doxorubicin Blood, 2005, 106, 1768-1768.	1.4	Ο
140	Wilm's Tumour 1 (WT1) Mutations Are Associated with FLT3-ITD Mutation and Poor Prognosis in Normal Karyotype AML Blood, 2006, 108, 2302-2302.	1.4	0
141	aUPD in the Clonal Evolution of Follicular Lymphoma Blood, 2006, 108, 2065-2065.	1.4	Ο
142	Should Patients with Myelodysplasia and/or Acute Myeloid Leukemia (MDS/AML) Be Screened for Inherited RUNX1 Mutations Prior to Sibling Donor Allografting? Blood, 2007, 110, 5027-5027.	1.4	0
143	Five New Pedigrees with Inherited RUNX1 Mutations Causing Familial Platelet Disorder with Propensity to Myeloid Malignancy (FPD/AML). Blood, 2008, 112, 5067-5067.	1.4	0
144	Recurrent Chromosomal Intermingling Interactions at the BCL2 Locus in T(14;18) +Ve and â^'Ve Cell Lines Blood, 2008, 112, 2048-2048.	1.4	0

#	Article	IF	CITATIONS
145	Genetic Abnormalities Involved in the Development and Progression of Follicular Lymphoma Blood, 2008, 112, 2049-2049.	1.4	0
146	Role of Different C/EBPα Mutations in AML Transformation Blood, 2008, 112, 1343-1343.	1.4	0
147	High Incidence of EZH2 Mutations with Variable Mutation Load in Follicular Lymphoma and Its Consequences for EZH2 Targeted Therapy. Blood, 2012, 120, 545-545.	1.4	0
148	Whole Genome Sequencing in Sequential Biopsies Reveals the Genetic Evolution of Follicular Lymphoma to Transformed Follicular Lymphoma. Blood, 2012, 120, 145-145.	1.4	0
149	Investigating The Role Of MLL2 (Mll4) In B Cell Development. Blood, 2013, 122, 343-343.	1.4	0
150	Familial AML With Germline CEBPA Mutations: Extended Clinical Outcomes and Analysis Of Secondary Mutations Using Whole Exome Sequencing. Blood, 2013, 122, 740-740.	1.4	0
151	ÎFΚΒΙΕ Deletions: A Novel Marker of Clinical Aggressiveness in Primary Mediastinal B-Cell Lymphoma. Blood, 2016, 128, 609-609.	1.4	0
152	Longitudinal Analyses of Diagnostic-Relapse Biopsies of Diffuse Large B Cell Lymphoma Reveal a Poor Risk Subset of ABC Patients Based on the Expression of a 30 Gene Panel. Blood, 2019, 134, 2769-2769.	1.4	0
153	Characterising Tumour and Microenvironmental Responses to R-CHOP in Immunocompetent Mouse Models of DLBCL. Blood, 2021, 138, 2401-2401.	1.4	0
154	The Paradoxical Efficacy of KDM6 Inhibition in Germinal Centre B-Cell Lymphomas. Blood, 2021, 138, 3289-3289.	1.4	0
155	Systematic Evaluation of Somatic <i>Cis</i> -Regulatory Mutations in Follicular Lymphoma. Blood, 2020. 136. 26-27.	1.4	0