Robin Vanden Bossche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/673491/publications.pdf

Version: 2024-02-01

20 papers 1,369 citations

471509 17 h-index 752698 20 g-index

20 all docs

20 docs citations

20 times ranked 1779 citing authors

#	Article	IF	CITATIONS
1	The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in <i>Catharanthus roseus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8130-8135.	7.1	176
2	The bHLH Transcription Factors TSAR1 and TSAR2 Regulate Triterpene Saponin Biosynthesis in <i>Medicago truncatula (i). Plant Physiology, 2016, 170, 194-210.</i>	4.8	152
3	A Repressor Protein Complex Regulates Leaf Growth in Arabidopsis. Plant Cell, 2015, 27, 2273-2287.	6.6	118
4	The protein quality control system manages plant defence compound synthesis. Nature, 2013, 504, 148-152.	27.8	99
5	The basic helixâ€loopâ€helix transcription factor <scp>BIS</scp> 2 is essential for monoterpenoid indole alkaloid production in the medicinal plant <i>Catharanthus roseus</i> . Plant Journal, 2016, 88, 3-12.	5.7	98
6	OSC2 and CYP716A14v2 Catalyze the Biosynthesis of Triterpenoids for the Cuticle of Aerial Organs of <i>Artemisia annua</i> . Plant Cell, 2015, 27, 286-301.	6.6	96
7	A MYC2/MYC3/MYC4-dependent transcription factor network regulates water spray-responsive gene expression and jasmonate levels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23345-23356.	7.1	95
8	Functional characterization of the Arabidopsis transcription factor bZIP29 reveals its role in leaf and root development. Journal of Experimental Botany, 2016, 67, 5825-5840.	4.8	78
9	The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability. Plant Physiology, 2015, 169, 1405-1417.	4.8	76
10	An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metabolic Engineering, 2018, 48, 150-162.	7. O	70
11	The Non-JAZ TIFY Protein TIFY8 from Arabidopsis thaliana Is a Transcriptional Repressor. PLoS ONE, 2014, 9, e84891.	2.5	55
12	The transcriptional repressor complex FRS7-FRS12 regulates flowering time and growth in Arabidopsis. Nature Communications, 2017, 8, 15235.	12.8	54
13	Transcript profiling of jasmonateâ€elicited <i>Taxus</i> cells reveals a βâ€phenylalanineâ€CoA ligase. Plant Biotechnology Journal, 2016, 14, 85-96.	8.3	41
14	Transient Expression Assays in Tobacco Protoplasts. Methods in Molecular Biology, 2013, 1011, 227-239.	0.9	40
15	Clade IVa Basic Helix–Loop–Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis. Plant and Cell Physiology, 2016, 57, 2564-2575.	3.1	33
16	A Seed-Specific Regulator of Triterpene Saponin Biosynthesis in <i>Medicago truncatula</i> . Plant Cell, 2020, 32, 2020-2042.	6.6	30
17	Selection and validation of reference genes for transcript normalization in gene expression studies in Catharanthus roseus. Plant Physiology and Biochemistry, 2014, 83, 20-25.	5 . 8	29
18	FRS7 and FRS12 recruit NINJA to regulate expression of glucosinolate biosynthesis genes. New Phytologist, 2020, 227, 1124-1137.	7.3	17

#	Art	TICLE	IF	CITATIONS
19	The me	e <scp>MYB</scp> transcription factor Emission of Methyl Anthranilate 1 stimulates emission of ethyl anthranilate from <i>Medicago truncatula</i> hairy roots. Plant Journal, 2019, 99, 637-654.	5.7	10
20	Hyp dec Bel	persensitivity of ArabidopsisTAXIMIN1overexpression lines to light stress is correlated with creased sinapoyl malate abundance and countered by the antibiotic cefotaxime. Plant Signaling and havior, 2016, 11, e1143998.	2.4	2