John Andrew Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6734822/publications.pdf

Version: 2024-02-01

24 papers 2,242 citations

430442 18 h-index 23 g-index

24 all docs

24 docs citations

24 times ranked 2521 citing authors

#	Article	IF	Citations
1	Thermodynamics contributes to high limonene productivity in cyanobacteria. Metabolic Engineering Communications, 2022, 14, e00193.	1.9	10
2	<i>De novo</i> Biosynthesis of Salvianolic Acid B in <i>Saccharomyces cerevisiae</i> Engineered with the Rosmarinic Acid Biosynthetic Pathway. Journal of Agricultural and Food Chemistry, 2022, 70, 2290-2302.	2.4	7
3	Development of an E. coli-based norbaeocystin production platform and evaluation of behavioral effects in rats. Metabolic Engineering Communications, 2022, 14, e00196.	1.9	8
4	The three NADH dehydrogenases of Pseudomonas aeruginosa: Their roles in energy metabolism and links to virulence. PLoS ONE, 2021, 16, e0244142.	1.1	8
5	Homebrewed psilocybin: can new routes for pharmaceutical psilocybin production enable recreational use?. Bioengineered, 2021, 12, 8863-8871.	1.4	2
6	In vivo production of psilocybin in E. coli. Metabolic Engineering, 2019, 56, 111-119.	3.6	42
7	Use of bacterial co-cultures for the efficient production of chemicals. Current Opinion in Biotechnology, 2018, 53, 33-38.	3.3	107
8	Learning From Nature: Using Microbial Consortia To Improve Biochemical Synthesis., 2018,,.		0
9	Complete Biosynthesis of Anthocyanins Using <i>E. coli</i> Polycultures. MBio, 2017, 8, .	1.8	157
10	Naringeninâ€responsive riboswitchâ€based fluorescent biosensor module for <i>Escherichia coli</i> coâ€cultures. Biotechnology and Bioengineering, 2017, 114, 2235-2244.	1.7	83
11	Deciphering flux adjustments of engineered E. coli cells during fermentation with changing growth conditions. Metabolic Engineering, 2017, 39, 247-256.	3.6	33
12	Effect of Genomic Integration Location on Heterologous Protein Expression and Metabolic Engineering in <i>E.Âcoli</i> . ACS Synthetic Biology, 2017, 6, 710-720.	1.9	93
13	Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metabolic Engineering, 2017, 39, 49-59.	3.6	137
14	Comparative thermal inactivation analysis of <i>Aspergillus oryzae</i> and <i>Thiellavia terrestris</i> cutinase: Role of glycosylation. Biotechnology and Bioengineering, 2017, 114, 63-73.	1.7	33
15	Optimization of naringenin and <i>p</i> -coumaric acid hydroxylation using the native <i>E. coli</i> hydroxylase complex, HpaBC. Biotechnology Progress, 2016, 32, 21-25.	1.3	56
16	Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in <i>Escherichia coli</i> . Nucleic Acids Research, 2016, 44, 4472-4485.	6.5	74
17	Metabolic Burden: Cornerstones in Synthetic Biology and Metabolic Engineering Applications. Trends in Biotechnology, 2016, 34, 652-664.	4.9	463
18	Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metabolic Engineering, 2016, 35, 55-63.	3.6	210

#	Article	IF	CITATIONS
19	Occurrence of ferredoxin:NAD ⁺ oxidoreductase activity and its ion specificity in several Gram-positive and Gram-negative bacteria. PeerJ, 2016, 4, e1515.	0.9	40
20	ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways. Scientific Reports, 2015, 5, 11301.	1.6	126
21	CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in <i>E. coli</i>). ACS Synthetic Biology, 2015, 4, 987-1000.	1.9	144
22	Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering. Metabolic Engineering, 2015, 28, 43-53.	3.6	116
23	Production of chondroitin in metabolically engineered E. coli. Metabolic Engineering, 2015, 27, 92-100.	3.6	117
24	Metabolic pathway balancing and its role in the production of biofuels and chemicals. Current Opinion in Biotechnology, 2015, 33, 52-59.	3.3	176