Jiuhui Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6734687/publications.pdf

Version: 2024-02-01

55 papers	4,447 citations	35 h-index	190340 53 g-index
55	55	55	8546
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem, 2022, 4, 100069.	10.1	43
2	3D Continuously Porous Graphene for Energy Applications. Advanced Materials, 2022, 34, e2108750.	11.1	53
3	A 3Dâ€Printed, Freestanding Carbon Lattice for Sodium Ion Batteries. Small, 2022, 18, .	5.2	22
4	Dilute molybdenum atoms embedded in hierarchical nanoporous copper accelerate the hydrogen evolution reaction. Scripta Materialia, 2021, 191, 56-61.	2.6	14
5	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021, 13, 10916-10924.	2.8	13
6	Dislocation-mediated shear amorphization in boron carbide. Science Advances, 2021, 7, .	4.7	49
7	3D Bimodal Porous Amorphous Carbon with Self-Similar Porosity by Low-Temperature Sequential Chemical Dealloying. Chemistry of Materials, 2021, 33, 1013-1021.	3.2	11
8	Vapor phase dealloying kinetics of MnZn alloys. Acta Materialia, 2021, 212, 116916.	3.8	19
9	Effect of Local Atomic Structure on Sodium Ion Storage in Hard Amorphous Carbon. Nano Letters, 2021, 21, 6504-6510.	4.5	37
10	Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Nanoscale, 2021, 13, 10862-10870.	2.8	21
11	Identifying Electrocatalytic Sites of the Nanoporous Copper–Ruthenium Alloy for Hydrogen Evolution Reaction in Alkaline Electrolyte. ACS Energy Letters, 2020, 5, 192-199.	8.8	209
12	Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design. ACS Nano, 2020, 14, 4374-4382.	7.3	107
13	Synergetic Effect of Liquid and Solid Catalysts on the Energy Efficiency of Li–O ₂ Batteries: Cell Performances and Operando STEM Observations. Nano Letters, 2020, 20, 2183-2190.	4.5	11
14	Dealloying Kinetics of AgAu Nanoparticles by <i>In Situ</i> Liquid-Cell Scanning Transmission Electron Microscopy. Nano Letters, 2020, 20, 1944-1951.	4.5	47
15	Novel hierarchical nanoporous graphene nanoplatelets with excellent rate capabilities produced via self-templating liquid metal dealloying. Materials Today Communications, 2020, 24, 101120.	0.9	13
16	Operando Observations of SEI Film Evolution by Massâ€Sensitive Scanning Transmission Electron Microscopy. Advanced Energy Materials, 2019, 9, 1902675.	10.2	64
17	Unprecedented Electromagnetic Interference Shielding from Three-Dimensional Bi-continuous Nanoporous Graphene. Matter, 2019, 1, 1077-1087.	5.0	53
18	3D bicontinuous nanoporous plasmonic heterostructure for enhanced hydrogen evolution reaction under visible light. Nano Energy, 2019, 58, 552-559.	8.2	29

#	Article	IF	Citations
19	Extraordinary tensile strength and ductility of scalable nanoporous graphene. Science Advances, 2019, 5, eaat6951.	4.7	78
20	Lithiophilic 3D Nanoporous Nitrogenâ€Doped Graphene for Dendriteâ€Free and Ultrahighâ€Rate Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1805334.	11.1	254
21	Free-standing nanoporous gold for direct plasmon enhanced electro-oxidation of alcohol molecules. Nano Energy, 2019, 56, 286-293.	8.2	48
22	Lithium intercalation into bilayer graphene. Nature Communications, 2019, 10, 275.	5.8	136
23	Three-Dimensional Nanoporous Co ₉ S ₄ P ₄ Pentlandite as a Bifunctional Electrocatalyst for Overall Neutral Water Splitting. ACS Applied Materials & Samp; Interfaces, 2019, 11, 3880-3888.	4.0	73
24	Vapor phase dealloying: A versatile approach for fabricating 3D porous materials. Acta Materialia, 2019, 163, 161-172.	3.8	45
25	Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy. Scientific Reports, 2018, 8, 3134.	1.6	25
26	Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nature Communications, 2018, 9, 276.	5.8	123
27	Bilayered nanoporous graphene/molybdenum oxide for high rate lithium ion batteries. Nano Energy, 2018, 45, 273-279.	8.2	54
28	Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage. Nano Energy, 2018, 49, 354-362.	8.2	74
29	Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery. Nano Energy, 2018, 47, 427-433.	8.2	47
30	Graphene-based quasi-solid-state lithium–oxygen batteries with high energy efficiency and a long cycling lifetime. NPG Asia Materials, 2018, 10, 1037-1045.	3.8	35
31	Lowâ€Temperature Carbideâ€Mediated Growth of Bicontinuous Nitrogenâ€Doped Mesoporous Graphene as an Efficient Oxygen Reduction Electrocatalyst. Advanced Materials, 2018, 30, e1803588.	11.1	73
32	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie, 2018, 130, 13486-13491.	1.6	10
33	Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2018, 57, 13302-13307.	7.2	64
34	Graphene Layer Encapsulation of Non-Noble Metal Nanoparticles as Acid-Stable Hydrogen Evolution Catalysts. ACS Energy Letters, 2018, 3, 1539-1544.	8.8	57
35	Macroporous mesh of nanoporous gold in electrochemical monitoring of superoxide release from skeletal muscle cells. Biosensors and Bioelectronics, 2017, 88, 41-47.	5.3	27
36	Full Performance Nanoporous Graphene Based Liâ€O ₂ Batteries through Solution Phase Oxygen Reduction and Redoxâ€Additive Mediated Li ₂ O ₂ Oxidation. Advanced Energy Materials, 2017, 7, 1601933.	10.2	65

#	Article	IF	CITATIONS
37	Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying. Nature Communications, 2017, 8, 1066.	5.8	69
38	Direct Observations of the Formation and Redoxâ€Mediatorâ€Assisted Decomposition of Li ₂ O ₂ in a Liquid ell Li–O ₂ Microbattery by Scanning Transmission Electron Microscopy. Advanced Materials, 2017, 29, 1702752.	11.1	41
39	Correlation between Local Structure Order and Spatial Heterogeneity in a Metallic Glass. Physical Review Letters, 2017, 119, 215501.	2.9	116
40	Effect of Chemical Doping on Cathodic Performance of Bicontinuous Nanoporous Graphene for Liâ€O ₂ Batteries. Advanced Energy Materials, 2016, 6, 1501870.	10.2	132
41	Graphene@Nanoporous Nickel Cathode for Liâ^'O ₂ Batteries. ChemNanoMat, 2016, 2, 176-181.	1.5	12
42	Application of nanoporous gold in planar and mesh forms in electrochemical superoxide biosensing. , 2016, , .		0
43	Interfacial insights into 3D plasmonic multijunction nanoarchitecture toward efficient photocatalytic performance. Nano Energy, 2016, 27, 515-525.	8.2	36
44	Atomicâ€Sized Pores Enhanced Electrocatalysis of TaS ₂ Nanosheets for Hydrogen Evolution. Advanced Materials, 2016, 28, 8945-8949.	11.1	167
45	Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Scientific Reports, 2016, 6, 33466.	1.6	52
46	Online Monitoring of Superoxide Anions Released from Skeletal Muscle Cells Using an Electrochemical Biosensor Based on Thick-Film Nanoporous Gold. ACS Sensors, 2016, 1, 921-928.	4.0	27
47	Bicontinuous nanotubular graphene–polypyrrole hybrid for high performance flexible supercapacitors. Nano Energy, 2016, 19, 391-400.	8.2	137
48	Onâ€Chip Microâ€Pseudocapacitors for Ultrahigh Energy and Power Delivery. Advanced Science, 2015, 2, 1500067.	5.6	66
49	3D Nanoporous Nitrogenâ€Doped Graphene with Encapsulated RuO ₂ Nanoparticles for Li–O ₂ Batteries. Advanced Materials, 2015, 27, 6137-6143.	11.1	195
50	Multifunctional Porous Graphene for Highâ€Efficiency Steam Generation by Heat Localization. Advanced Materials, 2015, 27, 4302-4307.	11.1	769
51	An electrochemical biosensor based on gold microspheres and nanoporous gold for real-time detection of superoxide anion in skeletal muscle tissue. , 2015, 2015, 7962-5.		2
52	Nanoporous metal/oxide hybrid materials for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 3620-3626.	5.2	45
53	A nanoporous metal recuperated MnO ₂ anode for lithium ion batteries. Nanoscale, 2015, 7, 15111-15116.	2.8	58
54	Fabrication and high photocatalytic performance of noble metal nanoparticles supported on 3DOM InVO4–BiVO4 for the visible-light-driven degradation of rhodamine B and methylene blue. Applied Catalysis B: Environmental, 2015, 165, 285-295.	10.8	121

#	Article	IF	CITATIONS
55	Monolayer MoS ₂ Films Supported by 3D Nanoporous Metals for Highâ€Efficiency Electrocatalytic Hydrogen Production. Advanced Materials, 2014, 26, 8023-8028.	11.1	299