## Iestyn D Barr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6734176/publications.pdf Version: 2024-02-01



IFSTVN D RADD

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Glacial geomorphological mapping: A review of approaches and frameworks for best practice.<br>Earth-Science Reviews, 2018, 185, 806-846.                                                                                            | 4.0 | 157       |
| 2  | Widespread drying of European peatlands in recent centuries. Nature Geoscience, 2019, 12, 922-928.                                                                                                                                  | 5.4 | 130       |
| 3  | <scp>BRITICE</scp> Glacial Map, version 2: a map and <scp>GIS</scp> database of glacial landforms of the last British–Irish Ice Sheet. Boreas, 2018, 47, 11.                                                                        | 1.2 | 107       |
| 4  | A review of topographic controls on moraine distribution. Geomorphology, 2014, 226, 44-64.                                                                                                                                          | 1.1 | 97        |
| 5  | Glacial cirques as palaeoenvironmental indicators: Their potential and limitations. Earth-Science<br>Reviews, 2015, 151, 48-78.                                                                                                     | 4.0 | 82        |
| 6  | Late Quaternary glaciations in Far NE Russia; combining moraines, topography and chronology to assess regional and global glaciation synchrony. Quaternary Science Reviews, 2012, 53, 72-87.                                        | 1.4 | 65        |
| 7  | Using UAV acquired photography and structure from motion techniques for studying glacier<br>landforms: application to the glacial flutes at IsfallsglaciĀ <b>r</b> ēn. Earth Surface Processes and<br>Landforms, 2017, 42, 877-888. | 1.2 | 58        |
| 8  | Palaeoglacial and palaeoclimatic conditions in the NW Pacific, as revealed by a morphometric analysis of cirques upon the Kamchatka Peninsula. Geomorphology, 2013, 192, 15-29.                                                     | 1.1 | 48        |
| 9  | Using the surface profiles of modern ice masses to inform palaeo-glacier reconstructions.<br>Quaternary Science Reviews, 2010, 29, 3240-3255.                                                                                       | 1.4 | 38        |
| 10 | Pleistocene and Holocene glacier fluctuations upon the Kamchatka Peninsula. Global and Planetary<br>Change, 2014, 113, 110-120.                                                                                                     | 1.6 | 36        |
| 11 | Glaciers and climate in Pacific Far NE Russia during the Last Glacial Maximum. Journal of Quaternary<br>Science, 2011, 26, 227-237.                                                                                                 | 1.1 | 34        |
| 12 | Manual mapping of drumlins in synthetic landscapes to assess operator effectiveness. Journal of<br>Maps, 2015, 11, 719-729.                                                                                                         | 1.0 | 29        |
| 13 | ACME, a GIS tool for Automated Cirque Metric Extraction. Geomorphology, 2017, 278, 280-286.                                                                                                                                         | 1.1 | 28        |
| 14 | Climate patterns during former periods of mountain glaciation in Britain and Ireland: Inferences from the cirque record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485, 466-475.                                     | 1.0 | 27        |
| 15 | Climate impacts on soil erosion and muddy flooding at 1.5 versus 2°C warming. Land Degradation and Development, 2019, 30, 94-108.                                                                                                   | 1.8 | 24        |
| 16 | Equifinality and preservation potential of complex eskers. Boreas, 2020, 49, 211-231.                                                                                                                                               | 1.2 | 23        |
| 17 | Compositional data analysis of Holocene sediments from the West Bengal Sundarbans, India:<br>Geochemical proxies for grain-size variability in a delta environment. Applied Geochemistry, 2016, 75,<br>222-235.                     | 1.4 | 22        |
| 18 | Volcanic impacts on modern glaciers: A global synthesis. Earth-Science Reviews, 2018, 182, 186-203.                                                                                                                                 | 4.0 | 22        |

IESTYN D BARR

| #  | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Schmidt Hammer exposure dating (SHED): Calibration procedures, new exposure age data and an online calculator. Quaternary Geochronology, 2018, 44, 55-62.                                                         | 0.6 | 21        |
| 20 | The dynamics of mountain erosion: Cirque growth slows as landscapes age. Earth Surface Processes and Landforms, 2019, 44, 2628-2637.                                                                              | 1.2 | 21        |
| 21 | Testing the area–altitude balance ratio (AABR) and accumulation–area ratio (AAR) methods of calculating glacier equilibrium-line altitudes. Journal of Glaciology, 2022, 68, 357-368.                             | 1.1 | 21        |
| 22 | Understanding controls on cirque floor altitudes: Insights from Kamchatka. Geomorphology, 2015, 248, 1-13.                                                                                                        | 1.1 | 20        |
| 23 | Younger Dryas glaciers and climate in the Mourne Mountains, Northern Ireland. Journal of<br>Quaternary Science, 2017, 32, 104-115.                                                                                | 1.1 | 20        |
| 24 | Testing the efficacy of the glacial buzzsaw: insights from the Sredinny Mountains, Kamchatka.<br>Geomorphology, 2014, 206, 230-238.                                                                               | 1.1 | 19        |
| 25 | Multiple Late Holocene surges of a High-Arctic tidewater glacier system in Svalbard. Quaternary<br>Science Reviews, 2018, 201, 162-185.                                                                           | 1.4 | 17        |
| 26 | Distribution and pattern of moraines in Far NE Russia reveal former glacial extent. Journal of Maps,<br>2009, 5, 186-193.                                                                                         | 1.0 | 16        |
| 27 | Using ArcticDEM to Analyse the Dimensions and Dynamics of Debris-Covered Glaciers in Kamchatka,<br>Russia. Geosciences (Switzerland), 2018, 8, 216.                                                               | 1.0 | 15        |
| 28 | Moraine crest or slope: An analysis of the effects of boulder position on cosmogenic exposure age.<br>Earth and Planetary Science Letters, 2021, 570, 117092.                                                     | 1.8 | 15        |
| 29 | Provenance and depositional variability of the Thin Mud Facies in the lower Ganges-Brahmaputra<br>delta, West Bengal Sundarbans, India. Marine Geology, 2018, 395, 198-218.                                       | 0.9 | 14        |
| 30 | Timing of glacial retreat in the Wicklow Mountains, Ireland, conditioned by glacier size and topography. Journal of Quaternary Science, 2018, 33, 611-623.                                                        | 1.1 | 13        |
| 31 | Rapid glacial retreat on the Kamchatka Peninsula during the early 21st century. Cryosphere, 2016, 10, 1809-1821.                                                                                                  | 1.5 | 11        |
| 32 | Climatic controls on the equilibrium-line altitudes of Scandinavian cirque glaciers. Geomorphology,<br>2020, 352, 106986.                                                                                         | 1.1 | 11        |
| 33 | Glacio-archaeological evidence of permanent settlements within a glacier end moraine complex<br>during 980-1840 AD: The Miyar Basin, Lahaul Himalaya, India. Anthropocene, 2019, 26, 100197.                      | 1.6 | 10        |
| 34 | An updated moraine map of Far NE Russia. Journal of Maps, 2012, 8, 431-436.                                                                                                                                       | 1.0 | 8         |
| 35 | Variations in esker morphology and internal architecture record time-transgressive deposition<br>during ice margin retreat in Northern Ireland. Proceedings of the Geologists Association, 2021, 132,<br>409-425. | 0.6 | 8         |
| 36 | Complex kame belt morphology, stratigraphy and architecture. Earth Surface Processes and Landforms, 2019, 44, 2685-2702.                                                                                          | 1.2 | 7         |

IESTYN D BARR

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Reprint of "Pleistocene and Holocene glacier fluctuations upon the Kamchatka Peninsula". Global and<br>Planetary Change, 2015, 134, 155-165.                                                             | 1.6 | 5         |
| 38 | Examining the Viability of the World's Busiest Winter Road to Climate Change Using a Process-Based<br>Lake Model. Bulletin of the American Meteorological Society, 2021, 102, E1464-E1480.               | 1.7 | 5         |
| 39 | Controls on the altitude of Scandinavian cirques: What do they tell us about palaeoclimate?.<br>Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 600, 111062.                                    | 1.0 | 5         |
| 40 | Linking glacier extent and summer temperature in NE Russia - Implications for precipitation during the global Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 470, 72-80. | 1.0 | 4         |
| 41 | Pushing the Limits: Palynological Investigations at the Margin of the Greenland Ice Sheet in the Norse<br>Western Settlement. Environmental Archaeology, 2022, 27, 228-242.                              | 0.6 | 4         |
| 42 | Greenland tidewater glacier advanced rapidly during era of Norse settlement. Geology, 2022, 50,<br>704-709.                                                                                              | 2.0 | 4         |
| 43 | Late Holocene canyon-carving floods in northern Iceland were smaller than previously reported.<br>Communications Earth & Environment, 2021, 2, .                                                         | 2.6 | 3         |
| 44 | Assessing the Use of Optical Satellite Images to Detect Volcanic Impacts on Glacier Surface<br>Morphology. Remote Sensing, 2021, 13, 3453.                                                               | 1.8 | 3         |
| 45 | The (mis)conception of average Quaternary conditions. Quaternary Research, 2022, 105, 235-240.                                                                                                           | 1.0 | 3         |