Jeff Goldy

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/67335/jeff-goldy-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25	3,093	18	25
papers	citations	h-index	g-index
25	5,160 ext. citations	31.3	3.96
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
25	Local connectivity and synaptic dynamics in mouse and human neocortex <i>Science</i> , 2022 , 375, eabj5861	33.3	7
24	A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. <i>Nature</i> , 2021 , 598, 103-	1 50 .4	23
23	Human neocortical expansion involves glutamatergic neuron diversification. <i>Nature</i> , 2021 , 598, 151-15	8 50.4	21
22	Comparative cellular analysis of motor cortex in human, marmoset and mouse. <i>Nature</i> , 2021 , 598, 111-	1 59 .4	31
21	A multimodal cell census and atlas of the mammalian primary motor cortex. <i>Nature</i> , 2021 , 598, 86-102	50.4	44
20	Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. <i>Cell Reports</i> , 2021 , 34, 108754	10.6	33
19	Enhancer viruses for combinatorial cell-subclass-specific labeling. <i>Neuron</i> , 2021 , 109, 1449-1464.e13	13.9	26
18	Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. <i>ELife</i> , 2021 , 10,	8.9	6
17	Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells. <i>Cell</i> , 2020 , 183, 935-953.e19	56.2	78
16	Conserved cell types with divergent features in human versus mouse cortex. <i>Nature</i> , 2019 , 573, 61-68	50.4	569
15	An anatomic transcriptional atlas of human glioblastoma. <i>Science</i> , 2018 , 360, 660-663	33.3	189
14	Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. <i>PLoS ONE</i> , 2018 , 13, e0209648	3.7	199
13	Shared and distinct transcriptomic cell types across neocortical areas. <i>Nature</i> , 2018 , 563, 72-78	50.4	674
12	Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. <i>Nature Neuroscience</i> , 2016 , 19, 335-46	25.5	1007
11	Improving reliability and absolute quantification of human brain microarray data by filtering and scaling probes using RNA-Seq. <i>BMC Genomics</i> , 2014 , 15, 154	4.5	36
10	Multimodal Analysis for Human ex vivo Studies Shows Extensive Molecular Changes from Delays in Blood Processing		1
9	Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons		12

LIST OF PUBLICATIONS

8	An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types	23
7	A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation	25
6	Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse	33
5	Human cortical expansion involves diversification and specialization of supragranular intratelencephalic-projecting neurons	19
4	A multimodal cell census and atlas of the mammalian primary motor cortex	12
3	Single-cell RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates and humans	2
2	Enhancer viruses and a transgenic platform for combinatorial cell subclass-specific labeling	20
1	Local Connectivity and Synaptic Dynamics in Mouse and Human Neocortex	3