
Geert M Raes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6733348/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dendritic Cell-Based Immunotherapy in Multiple Myeloma: Challenges, Opportunities, and Future Directions. International Journal of Molecular Sciences, 2022, 23, 904.	1.8	25
2	In vivo Visualization of M2 Macrophages in the Myocardium After Myocardial Infarction (MI) Using 68Ga-NOTA-Anti-MMR Nb: Targeting Mannose Receptor (MR, CD206) on M2 Macrophages. Frontiers in Cardiovascular Medicine, 2022, 9, 889963.	1.1	7
3	Phase I Trial of ¹³¹ I-GMIB-Anti-HER2-VHH1, a New Promising Candidate for HER2-Targeted Radionuclide Therapy in Breast Cancer Patients. Journal of Nuclear Medicine, 2021, 62, 1097-1105.	2.8	67
4	Development and Characterization of Nanobodies Targeting the Kupffer Cell. Frontiers in Immunology, 2021, 12, 641819.	2.2	6
5	Single-Domain Antibody Nuclear Imaging Allows Noninvasive Quantification of LAG-3 Expression by Tumor-Infiltrating Leukocytes and Predicts Response of Immune Checkpoint Blockade. Journal of Nuclear Medicine, 2021, 62, 1638-1644.	2.8	26
6	Decorating sdAbs with Chelators: Effect of Conjugation on Biodistribution and Functionality. Pharmaceuticals, 2021, 14, 407.	1.7	2
7	68Ga-Labeling: Laying the Foundation for an Anti-Radiolytic Formulation for NOTA-sdAb PET Tracers. Pharmaceuticals, 2021, 14, 448.	1.7	3
8	Lyophilization of NOTA-sdAbs: First step towards a cold diagnostic kit for 68Ga-labeling. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 166, 194-204.	2.0	4
9	Formatting and gene-based delivery of a human PD-L1 single domain antibody for immune checkpoint blockade. Molecular Therapy - Methods and Clinical Development, 2021, 22, 172-182.	1.8	11
10	IL1β Promotes Immune Suppression in the Tumor Microenvironment Independent of the Inflammasome and Gasdermin D. Cancer Immunology Research, 2021, 9, 309-323.	1.6	48
11	Evaluation of single domain antibodies as nuclear tracers for imaging of the immune checkpoint receptor human lymphocyte activation gene-3 in cancer. EJNMMI Research, 2021, 11, 115.	1.1	5
12	Imaging of Glioblastoma Tumor-Associated Myeloid Cells Using Nanobodies Targeting Signal Regulatory Protein Alpha. Frontiers in Immunology, 2021, 12, 777524.	2.2	18
13	Anti-Human PD-L1 Nanobody for Immuno-PET Imaging: Validation of a Conjugation Strategy for Clinical Translation. Biomolecules, 2020, 10, 1388.	1.8	42
14	Systemic Reprogramming of Monocytes in Cancer. Frontiers in Oncology, 2020, 10, 1399.	1.3	68
15	Innate Immune Defense Mechanisms by Myeloid Cells That Hamper Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1395.	2.2	11
16	Single Domain Antibody-Mediated Blockade of Programmed Death-Ligand 1 on Dendritic Cells Enhances CD8 T-cell Activation and Cytokine Production. Vaccines, 2019, 7, 85.	2.1	17
17	NIRF-Molecular Imaging with Synovial Macrophages-Targeting Vsig4 Nanobody for Disease Monitoring in a Mouse Model of Arthritis. International Journal of Molecular Sciences, 2019, 20, 3347.	1.8	11
18	Evaluating a Single Domain Antibody Targeting Human PD-L1 as a Nuclear Imaging and Therapeutic Agent. Cancers, 2019, 11, 872.	1.7	50

#	Article	IF	CITATIONS
19	Stromal-targeting radioimmunotherapy mitigates the progression of therapy-resistant tumors. Journal of Controlled Release, 2019, 314, 1-11.	4.8	22
20	Theranostics in immuno-oncology using nanobody derivatives. Theranostics, 2019, 9, 7772-7791.	4.6	83
21	Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques. EJNMMI Research, 2019, 9, 5.	1.1	46
22	Noninvasive Imaging of the Immune Checkpoint LAG-3 Using Nanobodies, from Development to Pre-Clinical Use. Biomolecules, 2019, 9, 548.	1.8	43
23	Clinical Translation of [68Ga]Ga-NOTA-anti-MMR-sdAb for PET/CT Imaging of Protumorigenic Macrophages. Molecular Imaging and Biology, 2019, 21, 898-906.	1.3	69
24	Nanobody-Facilitated Multiparametric PET/MRI Phenotyping of Atherosclerosis. JACC: Cardiovascular Imaging, 2019, 12, 2015-2026.	2.3	66
25	The role of hepatic macrophages in liver metastasis. Cellular Immunology, 2018, 330, 202-215.	1.4	39
26	Evaluation of [99mTc]Radiolabeled Macrophage Mannose Receptor-Specific Nanobodies for Targeting of Atherosclerotic Lesions in Mice. Molecular Imaging and Biology, 2018, 20, 260-267.	1.3	24
27	Beyond the Mâ€ <scp>CSF</scp> receptor – novel therapeutic targets in tumorâ€associated macrophages. FEBS Journal, 2018, 285, 777-787.	2.2	26
28	Development of an adenovirus vector vaccine platform for targeting dendritic cells. Cancer Gene Therapy, 2018, 25, 27-38.	2.2	27
29	Novel halfâ€life extended antiâ€MIF nanobodies protect against endotoxic shock. FASEB Journal, 2018, 32, 3411-3422.	0.2	27
30	Noninvasive imaging of the PD-1:PD-L1 immune checkpoint: Embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics, 2018, 8, 3559-3570.	4.6	85
31	Phase I results of CAM-H2: Safety profile and tumor targeting in patients Journal of Clinical Oncology, 2018, 36, e13017-e13017.	0.8	6
32	Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis. Molecular Imaging and Biology, 2017, 19, 49-58.	1.3	24
33	Antigen-presenting cell-targeted lentiviral vectors do not support the development of productive T-cell effector responses: implications for in vivo targeted vaccine delivery. Gene Therapy, 2017, 24, 370-375.	2.3	11
34	Reprint of: The non-mammalian MIF superfamily. Immunobiology, 2017, 222, 858-867.	0.8	12
35	1311-labeled Anti-HER2 Camelid sdAb as a Theranostic Tool in Cancer Treatment. Clinical Cancer Research, 2017, 23, 6616-6628.	3.2	124
36	The non-mammalian MIF superfamily. Immunobiology, 2017, 222, 473-482.	0.8	43

#	Article	IF	CITATIONS
37	Structural evaluation of a nanobody targeting complement receptor Vsig4 and its cross reactivity. Immunobiology, 2017, 222, 807-813.	0.8	23
38	Al ¹⁸ F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging. Theranostics, 2017, 7, 2924-2939.	4.6	54
39	Non-invasive assessment of murine PD-L1 levels in syngeneic tumor models by nuclear imaging with nanobody tracers. Oncotarget, 2017, 8, 41932-41946.	0.8	95
40	Specificity Evaluation and Disease Monitoring in Arthritis Imaging with Complement Receptor of the Ig superfamily targeting Nanobodies. Scientific Reports, 2016, 6, 35966.	1.6	11
41	Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 2016, 7, 10321.	5.8	604
42	The transduction pattern of ILâ€12â€encoding lentiviral vectors shapes the immunological outcome. European Journal of Immunology, 2015, 45, 3351-3361.	1.6	14
43	PET Imaging of Macrophage Mannose Receptor–Expressing Macrophages in Tumor Stroma Using ¹⁸ F-Radiolabeled Camelid Single-Domain Antibody Fragments. Journal of Nuclear Medicine, 2015, 56, 1265-1271.	2.8	139
44	Monitoring liver macrophages using nanobodies targeting Vsig4: Concanavalin A induced acute hepatitis as paradigm. Immunobiology, 2015, 220, 200-209.	0.8	27
45	MIF Contributes to Trypanosoma brucei Associated Immunopathogenicity Development. PLoS Pathogens, 2014, 10, e1004414.	2.1	45
46	Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression. Frontiers in Immunology, 2014, 5, 489.	2.2	163
47	The role of monocytes in the development of Tuberculosis-associated Immune Reconstitution Inflammatory Syndrome. Immunobiology, 2014, 219, 37-44.	0.8	48
48	Molecular Imaging with Macrophage CRIg-Targeting Nanobodies for Early and Preclinical Diagnosis in a Mouse Model of Rheumatoid Arthritis. Journal of Nuclear Medicine, 2014, 55, 824-829.	2.8	47
49	Immunogenicity of targeted lentivectors. Oncotarget, 2014, 5, 704-715.	0.8	25
50	African Trypanosomiasis as Paradigm for Involvement of the Mononuclear Phagocyte System in Pathogenicity During Parasite Infection. , 2014, , 349-374.		0
51	SPECT Imaging of Joint Inflammation with Nanobodies Targeting the Macrophage Mannose Receptor in a Mouse Model for Rheumatoid Arthritis. Journal of Nuclear Medicine, 2013, 54, 807-814.	2.8	80
52	Targeting of Human Antigen-Presenting Cell Subsets. Journal of Virology, 2013, 87, 11304-11308.	1.5	31
53	Modulation of the complement system in monocytes contributes to tuberculosis-associated immune reconstitution inflammatory syndrome. Aids, 2013, 27, 1725-1734.	1.0	38
54	Development of the Nanobody display technology to target lentiviral vectors to antigen-presenting cells. Gene Therapy, 2012, 19, 1133-1140.	2.3	55

#	Article	IF	CITATIONS
55	Nanobody-Based Targeting of the Macrophage Mannose Receptor for Effective <i>In Vivo</i> Imaging of Tumor-Associated Macrophages. Cancer Research, 2012, 72, 4165-4177.	0.4	263
56	Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology, 2012, 217, 1266-1272.	0.8	38
57	Editorial. Immunobiology, 2012, 217, 1223-1224.	0.8	1
58	Claudinâ€1, Claudinâ€2 and Claudinâ€11 Genes Differentially Associate with Distinct Types of Antiâ€inflammatory Macrophages <i>In vitro</i> and with Parasite†and Tumourâ€elicited Macrophages <i>In vivo</i> . Scandinavian Journal of Immunology, 2012, 75, 588-598.	1.3	22
59	Monocytes Contribute to Differential Immune Pressure on R5 versus X4 HIV through the Adipocytokine Visfatin/NAMPT. PLoS ONE, 2012, 7, e35074.	1.1	34
60	Heterogeneity of macrophage activation in fish. Developmental and Comparative Immunology, 2011, 35, 1246-1255.	1.0	83
61	A Novel Soluble Immune-Type Receptor (SITR) in Teleost Fish: Carp SITR Is Involved in the Nitric Oxide-Mediated Response to a Protozoan Parasite. PLoS ONE, 2011, 6, e15986.	1.1	18
62	Do-it-yourself: construction of a custom cDNA macroarray platform with high sensitivity and linear range. BMC Biotechnology, 2011, 11, 97.	1.7	1
63	Myeloidâ€derived suppressor cells in parasitic infections. European Journal of Immunology, 2010, 40, 2976-2985.	1.6	107
64	Scrutinizing the mechanisms underlying the induction of anemia of inflammation through GPI-mediated modulation of macrophage activation in a model of African trypanosomiasis. Microbes and Infection, 2010, 12, 389-399.	1.0	30
65	In Vitro Analysis and In Vivo Tumor Targeting of a Humanized, Grafted Nanobody in Mice Using Pinhole SPECT/Micro-CT. Journal of Nuclear Medicine, 2010, 51, 1099-1106.	2.8	106
66	The Central Role of Macrophages in Trypanosomiasis-Associated Anemia:Rationale for Therapeutical Approaches. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2010, 10, 71-82.	0.6	40
67	Expression of the Inhibitory CD200 Receptor Is Associated with Alternative Macrophage Activation. Journal of Innate Immunity, 2010, 2, 195-200.	1.8	99
68	Nanobodies as Tools for In Vivo Imaging of Specific Immune Cell Types. Journal of Nuclear Medicine, 2010, 51, 782-789.	2.8	102
69	Transcriptome analysis of monocyte-HIV interactions. Retrovirology, 2010, 7, 53.	0.9	52
70	A Novel Promiscuous Class of Camelid Single-Domain Antibody Contributes to the Antigen-Binding Repertoire. Journal of Immunology, 2010, 184, 5696-5704.	0.4	68
71	Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor IºB. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14978-14983.	3.3	551
72	Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. Cytokine, 2009, 48, 35.	1.4	1

#	Article	IF	CITATIONS
73	Do monocytes use the novel adipocytokine Visfatin/NAMPT/PBEF1 to flip the HIV coreceptor switch?. Retrovirology, 2009, 6, .	0.9	0
74	Alternatively Activated Myeloid Cells Limit Pathogenicity Associated with African Trypanosomiasis through the IL-10 Inducible Gene Selenoprotein P. Journal of Immunology, 2008, 180, 6168-6175.	0.4	92
75	Classical and alternative activation of macrophages: different pathways of macrophage-mediated tumor promotion. , 2008, , 139-156.		1
76	The metastatic Tâ€cell hybridoma antigen/Pâ€selectin glycoprotein ligand 1 is required for hematogenous metastasis of lymphomas. International Journal of Cancer, 2007, 121, 2646-2652.	2.3	20
77	African trypanosomosis: From immune escape and immunopathology to immune intervention. Veterinary Parasitology, 2007, 148, 3-13.	0.7	57
78	Alternatively activated macrophages in protozoan infections. Current Opinion in Immunology, 2007, 19, 454-459.	2.4	85
79	Mycobacterium-associated immune reconstitution disease: macrophages running wild?. Lancet Infectious Diseases, The, 2006, 6, 2-3.	4.6	40
80	Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion. Immunobiology, 2006, 211, 487-501.	0.8	309
81	Identification of a common gene signature for type II cytokine–associated myeloid cells elicited in vivo in different pathologic conditions. Blood, 2006, 108, 575-583.	0.6	155
82	Peroxisome proliferator-activated receptor γ (PPARγ) ligands reverse CTL suppression by alternatively activated (M2) macrophages in cancer. Blood, 2006, 108, 525-535.	0.6	114
83	The dermal microenvironment induces the expression of the alternative activation marker CD301/mMGL in mononuclear phagocytes, independent of IL-4/IL-13 signaling. Journal of Leukocyte Biology, 2006, 80, 838-849.	1.5	57
84	Arginase-1 and Ym1 Are Markers for Murine, but Not Human, Alternatively Activated Myeloid Cells. Journal of Immunology, 2005, 174, 6561-6562.	0.4	249
85	Reactive Oxygen Species and 12/15-Lipoxygenase Contribute to the Antiproliferative Capacity of Alternatively Activated Myeloid Cells Elicited during Helminth Infection. Journal of Immunology, 2005, 174, 6095-6104.	0.4	126
86	Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. Journal of Leukocyte Biology, 2005, 77, 321-327.	1.5	216
87	Alternatively activated macrophages during parasite infections. Trends in Parasitology, 2004, 20, 126-133.	1.5	261
88	Nitric Oxide-Independent CTL Suppression during Tumor Progression: Association with Arginase-Producing (M2) Myeloid Cells. Journal of Immunology, 2003, 170, 5064-5074.	0.4	95
89	Infection Stage-Dependent Modulation of Macrophage Activation in Trypanosoma congolense -Resistant and -Susceptible Mice. Infection and Immunity, 2002, 70, 6180-6187.	1.0	62
90	Antagonistic effect of NK cells on alternatively activated monocytes: a contribution of NK cells to CTL generation. Blood, 2002, 100, 4049-4058.	0.6	42

#	Article	IF	CITATIONS
91	FIZZ1 and Ym as Tools to Discriminate between Differentially Activated Macrophages. Autoimmunity, 2002, 9, 151-159.	0.6	118
92	Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. Journal of Leukocyte Biology, 2002, 71, 597-602.	1.5	302
93	B7-1, IFNγ and anti-CTLA-4 co-operate to prevent T-cell tolerization during immunotherapy against a murine T-lymphoma. International Journal of Cancer, 2000, 87, 539-547.	2.3	23
94	Cellular expression of the cytolytic factor in earthworms Eisenia foetida. Immunology Letters, 1998, 60, 23-29.	1.1	48
95	Effects of Altered Antigen Processing on T-Cell Responses Toward Murine T-Lymphomas. Advances in Experimental Medicine and Biology, 1998, 451, 211-215.	0.8	0
96	E5 2:45 Glucan-binding properties of a cytolytic protein of Eisenia foetida earthworms. Developmental and Comparative Immunology, 1997, 21, 115.	1.0	2
97	Multiple effects of transfection with interleukin 2 and/or interferon gamma on the behavior of mouse T lymphoma cells. Clinical and Experimental Metastasis, 1997, 16, 447-459.	1.7	4
98	Expression of B7-1 by highly metastatic mouse T lymphomas induces optimal natural killer cell-mediated cytotoxicity. Cancer Research, 1995, 55, 2730-3.	0.4	58