Fuping Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6733135/publications.pdf

Version: 2024-02-01

394421 454955 1,118 74 19 30 citations g-index h-index papers 74 74 74 489 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	First-principles analysis of Ti3C2Tx MXene as a promising candidate for SF6 decomposition characteristic components sensor. Applied Surface Science, 2022, 578, 152020.	6.1	37
2	Impulse Breakdown Characteristics of Eco-Friendly Gas Câ,Fâ,ê,€O/Nâ,, in Nonhomogeneous Field. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 162-169.	2.9	6
3	The effect of the convex lens focal length and distance between the optical devices on the photoacoustic signals in gas detection. Sensors and Actuators A: Physical, 2022, 335, 113369.	4.1	4
4	Adsorption Characteristics of SF ₆ and its Main Over-Thermal Decomposition Components on Ag (1 1 1) Surface. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 551-558.	2.9	8
5	Effect of O2 on the Thermal Stability and Decomposition Process of C5F10O. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, , 1-1.	2.9	0
6	Isotope Tracing Experiment on the Mechanism of O2 on the Over-Thermal Decomposition of SF6. Plasma Chemistry and Plasma Processing, 2022, 42, 505-518.	2.4	4
7	Breakdown Characteristics of Eco-Friendly Gas C ₅ F ₁₀ O/CO ₂ Under Switching Impulse in Nonuniform Electric Field. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 866-873.	2.9	4
8	Hybrid numerical simulation of the generation and distribution characteristics of SF ₆ heavy particles under different DC PD energies. AIP Advances, 2022, 12, 045226.	1.3	0
9	The effect of the photoacoustic Field-Photoacoustic cell coupling term on the performance of the gas detection system. Optics and Laser Technology, 2022, 153, 108211.	4.6	7
10	Theoretical study of the interaction of SF6 molecule on Ti3C2Tx surfaces. Applied Surface Science, 2022, 597, 153721.	6.1	6
11	Self-Recovery Pathways of C ₅ F ₁₀ O After Over Thermal Decomposition. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 1450-1458.	2.9	1
12	Switching Impulse Characteristics of C ₅ F ₁₀ O Gas Mixtures Under Extremely Nonuniform Field. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 1617-1624.	2.9	2
13	AC Breakdown Characteristics of Câ,Fâ,ê,€O/COâ,, Gas Under Different Electrode Surface Roughness. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 1425-1432.	2.9	3
14	Ti3C2Tx as a Sensor for SF6/N2 Nitrogen-Containing Fault Decomposition Characteristic Products: A Theoretical Study. Nanomaterials, 2022, 12, 2311.	4.1	8
15	Establishment of a Reax force field to study SF ₆ gas over-thermal decomposition. Journal Physics D: Applied Physics, 2021, 54, 115501.	2.8	18
16	Thermal Decomposition Mechanism of Environmental-Friendly Insulating Gas C5F10O on Cu $(1\ 1\ 1)$ Surface. Plasma Chemistry and Plasma Processing, 2021, 41, 1455-1469.	2.4	4
17	Compatibility of C5F100 with common-used sealing materials: An experimental study. AIP Advances, 2021, 11, .	1.3	6
18	Kinetic analysis of the effect of O ₂ on SF ₆ over-thermal decomposition. Journal Physics D: Applied Physics, 2021, 54, 495502.	2.8	12

#	Article	IF	CITATIONS
19	Adsorption mechanism of the environmentally friendly insulating gas C ₅ F ₁₀ O and its main decomposition products on a Cu $(1\ 1\ 1)$ surface. Journal Physics D: Applied Physics, 2021, 54, 145502.	2.8	6
20	SF ₆ decomposition and insulation condition monitoring of GIE: A review. High Voltage, 2021, 6, 955-966.	4.7	52
21	Decomposition Process of SF ₆ with Residual O ₂ under Over-Thermal Fault. , 2021, , .		0
22	Study on the Compatibility of Chloroprene Rubber and Environment-friendly Insulating Gas C ₅ F ₁₀ O., 2021,,.		0
23	Intelligent perception of power grid condition. High Voltage, 2021, 6, 923-923.	4.7	1
24	Decomposition Characteristics of SF ₆ /N ₂ Under Partial Discharge of Different Degrees. IEEE Access, 2020, 8, 192312-192319.	4.2	10
25	Isotope tracing experimental study on the effects of trace H ₂ O on the over-thermal decomposition of SF ₆ . Journal Physics D: Applied Physics, 2020, 53, 355501.	2.8	23
26	Mechanism of Trace O2 on SF6 Characteristic Decomposed Components Under Spark Discharge. Plasma Chemistry and Plasma Processing, 2020, 40, 469-481.	2.4	6
27	SF ₆ fault decomposition feature component extraction and triangle fault diagnosis method. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27, 581-589.	2.9	45
28	Reaction Thermodynamics of Overthermal Decomposition of C6F12O. Lecture Notes in Electrical Engineering, 2020, , 43-51.	0.4	3
29	GIS Insulation State Evaluation Based on Multi-source Information Fusion. Lecture Notes in Electrical Engineering, 2020, , 406-416.	0.4	2
30	Decomposition Characteristics of SF6 and Component Features Extraction Under Negative DC Partial Discharge. Lecture Notes in Electrical Engineering, 2020, , 396-405.	0.4	0
31	Influence Mechanism of O2 on SF6Overheating Decomposition Based on Isotope Tracer. , 2020, , .		0
32	Construction of Reax FF Force Field for SF6 Gas Insulation Medium under Over-thermal Fault., 2020,,.		0
33	Over Thermal Decomposition Characteristics of C ₅ F ₁₀ O: An Environmental Friendly Insulation Medium. IEEE Access, 2019, 7, 62080-62086.	4.2	21
34	Fault Diagnosis and Condition Division Criterion of DC Gas Insulating Equipment Based on SF ₆ Partial Discharge Decomposition Characteristics. IEEE Access, 2019, 7, 29869-29881.	4.2	19
35	Comprehensive Evaluation and Application of GIS Insulation Condition Part 2: Construction and Application of Comprehensive Evaluation Model Considering Universality and Economic Value. IEEE Access, 2019, 7, 129127-129135.	4.2	3
36	Comprehensive Evaluation and Application of GIS Insulation Condition Part 1: Selection and Optimization of Insulation Condition Comprehensive Evaluation Index Based on Multi-Source Information Fusion. IEEE Access, 2019, 7, 88254-88263.	4.2	10

#	Article	IF	CITATIONS
37	Conformation Analysis of Environmentally Friendly Insulating Gas C5-PFK. IEEE Access, 2019, 7, 92724-92731.	4.2	9
38	Triangle Fault Diagnosis Method for SF ₆ Gas-Insulated Equipment. IEEE Transactions on Power Delivery, 2019, 34, 1470-1477.	4.3	40
39	Evaluating DC Partial Discharge With SF ₆ Decomposition Characteristics. IEEE Transactions on Power Delivery, 2019, 34, 1383-1392.	4.3	39
40	SF ₆ positive DC partial discharge decomposition components under four typical insulation defects. IET Generation, Transmission and Distribution, 2019, 13, 1-8.	2.5	14
41	Blade imbalance fault diagnosis of doubly fed wind turbine based on current coordinate transformation. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14, 185-191.	1.4	8
42	SF ₆ decomposition components under different metallic free onducting wire ype particles in positive DC partial discharge. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14, 214-220.	1.4	9
43	Correlation analysis between SF ₆ decomposed components and negative DC partial discharge strength initiated by needleâ€plate defect. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13, 382-389.	1.4	15
44	Correlation characteristics between SF6 decomposition process and partial discharge quantity under negative DC condition initiated by free metal particle defect. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25, 574-583.	2.9	17
45	Correlation characteristics between gas pressure and SF ₆ decomposition under negative DC partial discharge. IET Generation, Transmission and Distribution, 2018, 12, 1240-1246.	2.5	13
46	Recognition of partial discharge types based on SF <inf>6</inf> decomposed components under negative DC. , 2018, , .		0
47	Calculation Method of Partial Discharge Severity Assessment Index Weight Using Factor Analysis Based on Mutual Information. , 2018, , .		0
48	Research on SF $\langle sup \rangle 6 \langle sup \rangle$ Sulfur-containing Decomposition Components by Different Metallic Wire-type Free Conducting Particles under Positive DC Partial Discharge., 2018,,.		0
49	The Influence of Free Wire-type Conducting Particles on SF <inf>6</inf> Sulfur-containing Decomposition Components Under Positive DC Partial Discharge. , 2018, , .		1
50	Correlation Characteristics Between Partial Discharge Quantity and SF <inf>6</inf> Decomposition Component Under Negative DC. , 2018, , .		0
51	Influence and mechanism of pressure on SF ₆ decomposition components of gasâ€insulated switchgear under positive DC partial discharge. IEEJ Transactions on Electrical and Electronic Engineering, 2018, 13, 1136-1141.	1.4	6
52	Influence Mechanisms of Trace H2O on the Generating Process of SF6 Spark Discharge Decomposition Components. Plasma Chemistry and Plasma Processing, 2017, 37, 325-340.	2.4	17
53	Study on the influence rules of trace H2O on SF6 spark discharge decomposition characteristic components. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 367-374.	2.9	9
54	Influence of Metallic Materials on SF6 Decomposition Components under Positive DC Partial Discharge. Plasma Chemistry and Plasma Processing, 2017, 37, 1523-1534.	2.4	8

#	Article	IF	Citations
55	Investigation on SF6 spark decomposition characteristics under different pressures. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 2066-2075.	2.9	17
56	Decomposition Characteristics of SF6 and Partial Discharge Recognition under Negative DC Conditions. Energies, 2017, 10, 556.	3.1	21
57	Using SF6 Decomposed Component Analysis for the Diagnosis of Partial Discharge Severity Initiated by Free Metal Particle Defect. Energies, 2017, 10, 1119.	3.1	19
58	Feature Selection for Partial Discharge Severity Assessment in Gas-Insulated Switchgear Based on Minimum Redundancy and Maximum Relevance. Energies, 2017, 10, 1516.	3.1	14
59	Assessment of PD severity in gasâ€insulated switchgear with an SSAE. IET Science, Measurement and Technology, 2017, 11, 423-430.	1.6	30
60	Correlation Characteristics Comparison of SF6 Decomposition versus Gas Pressure under Negative DC Partial Discharge Initiated by Two Typical Defects. Energies, 2017, 10, 1085.	3.1	3
61	Investigation of partial discharge between moving charged metal particles and electrodes in insulating oil under flow state and AC condition. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23, 1099-1105.	2.9	24
62	Reconstructing and extracting information on SF ₆ decomposition characteristic components induced by partial overthermal fault in GIE. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23, 183-193.	2.9	19
63	SF <inf>6</inf> partial overthermal decomposition characteristics of thermal fault in organic insulating materials. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23, 829-837.	2.9	9
64	Feature extraction of SF ₆ thermal decomposition characteristics to diagnose overheating fault. IET Science, Measurement and Technology, 2015, 9, 751-757.	1.6	21
65	Influence regularity of trace H ₂ O on SF ₆ decomposition characteristics under partial discharge of needle-plate electrode. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 287-295.	2.9	36
66	Study on the influence mechanism of trace H ₂ O on SF ₆ thermal decomposition characteristic components. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 766-774.	2.9	46
67	A semi-definite relaxation approach for partial discharge source location in transformers. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 1097-1103.	2.9	20
68	Feature extraction and severity assessment of partial discharge under protrusion defect based on fuzzy comprehensive evaluation. IET Generation, Transmission and Distribution, 2015, 9, 2493-2500.	2.5	28
69	Decomposition characteristics of SF ₆ under thermal fault for temperatures below 400°C. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 995-1004.	2.9	77
70	Quantitative analysis of the influence of regularity of SF ₆ decomposition characteristics with trace O ₂ under partial discharge. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 1462-1470.	2.9	9
71	Influence regularity of trace O6 on SF6 decomposition characteristics and its mathematical amendment under partial discharge. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 105-115.	2.9	16
72	Relationship between decomposition gas ratios and partial discharge energy in GIS, and the influence of residual water and oxygen. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 1226-1234.	2.9	37

FUPING ZENG

#	Article	IF	CITATIONS
73	Influence regularity of trace O ₆ on SF ₆ decomposition characteristics and its mathematical amendment under partial discharge. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 105-115.	2.9	9
74	Correlation analysis between formation process of SF ₆ decomposed components and partial discharge qualities. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20, 864-875.	2.9	127