Ke-jun Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/673299/publications.pdf Version: 2024-02-01

KE-ILIN DONG

#	Article	lF	CITATIONS
1	Experimental and numerical study of a gas cyclone with a central filter. Particuology, 2022, 63, 47-59.	3.6	13
2	Pore-scale numerical study of intrinsic permeability for fluid flow through asymmetric ceramic microfiltration membranes. Journal of Membrane Science, 2022, 642, 119920.	8.2	17
3	Air impact induced densest amorphous granular materials: Formation, dynamics, and mechanisms. Physical Review B, 2022, 105, .	3.2	4
4	Numerical study of the hydraulic tortuosity for fluid flow through elliptical particle packings. Powder Technology, 2022, 398, 117047.	4.2	2
5	GaN/Surface-modified graphitic carbon nitride heterojunction: Promising photocatalytic hydrogen evolution materials. International Journal of Hydrogen Energy, 2022, 47, 7202-7213.	7.1	18
6	DEM study and machine learning model of particle percolation under vibration. Advanced Powder Technology, 2022, 33, 103551.	4.1	12
7	CFD-DEM numerical study on air impacted packing densification of equiaxed cylindrical particles. Advanced Powder Technology, 2022, 33, 103641.	4.1	1
8	DEM study of particle segregation in the throat region of a blast furnace. Powder Technology, 2022, 407, 117660.	4.2	6
9	Numerical investigation of drag property for fluid flow through random arrays of elliptical cylinders. Powder Technology, 2021, 380, 539-552.	4.2	8
10	Effect of vibration mode on self-assembly of granular spheres under three-dimensional vibration. Powder Technology, 2021, 380, 47-58.	4.2	8
11	DEM Study on the Segregation of a Non-Spherical Intruder in a Vibrated Granular Bed. Processes, 2021, 9, 448.	2.8	3
12	DEM study of segregation degree and velocity of binary granular mixtures subject to vibration. Powder Technology, 2021, 382, 107-117.	4.2	19
13	DEM simulation of vibrated packing densification of mono-sized regular octahedral particles. Powder Technology, 2021, 384, 29-35.	4.2	8
14	Multiple Heterojunction System of Boron Nitrideâ€Graphene/Black Phosphorene as Highly Efficient Solar Cell. Advanced Theory and Simulations, 2021, 4, 2100169.	2.8	10
15	Aging effects on airflow distribution and micron-particle transport and deposition in a human lung using CFD-DPM approach. Advanced Powder Technology, 2021, 32, 3506-3516.	4.1	25
16	Aerosol Particle Transport and Deposition in Upper and Lower Airways of Infant, Child and Adult Human Lungs. Atmosphere, 2021, 12, 1402.	2.3	11
17	Atomic structure evolutions and mechanisms of the crystallization pathway of liquid Al during rapid cooling. RSC Advances, 2021, 11, 39829-39837.	3.6	9
18	Effect of packing method on packing formation and the correlation between packing density and interparticle force. Particuology, 2020, 48, 170-181.	3.6	5

Ke-JUN DONG

#	Article	IF	CITATIONS
19	Promote cohesive solid flow in a screw feeder with new screw designs. Powder Technology, 2020, 361, 248-257.	4.2	15
20	Explicit contact force model for superellipses by Fourier transform and application to superellipse packing. Powder Technology, 2020, 361, 112-123.	4.2	11
21	An accurate geometric contact force model for super-quadric particles. Computer Methods in Applied Mechanics and Engineering, 2020, 360, 112774.	6.6	20
22	Numerical study of vortex eccentricity in a gas cyclone. Applied Mathematical Modelling, 2020, 80, 683-701.	4.2	37
23	A New Interaction Force Model of Gold Nanorods Derived by Molecular Dynamics Simulation. Nanomaterials, 2020, 10, 1293.	4.1	1
24	Numerical study on the effect of the supersaturated vapor on the performance of a gas cyclone. Powder Technology, 2020, 366, 324-336.	4.2	15
25	Experimental study on 3D vibrated packing densification of mono-sized dodecahedral particles. Powder Technology, 2020, 367, 703-712.	4.2	6
26	Enhanced collection of fine particles in a cyclone using ultrasonic vapor with surfactants. Advanced Powder Technology, 2020, 31, 2207-2214.	4.1	11
27	Effect of pollutant source location on air pollutant dispersion around a high-rise building. Applied Mathematical Modelling, 2020, 81, 582-602.	4.2	24
28	Enhancing the collection efficiency of a gas cyclone with atomization and electrostatic charging. Powder Technology, 2020, 364, 562-571.	4.2	7
29	Particle-scale modelling of fluid velocity distribution near the particles surface in sand filtration. Water Research, 2020, 177, 115758.	11.3	22
30	Mixing of Particles in a Rotating Drum with Inclined Axis of Rotation. Processes, 2020, 8, 1688.	2.8	5
31	Bimodal self-assembly of granular spheres under vertical vibration. Soft Matter, 2019, 15, 5933-5944.	2.7	23
32	Multiscale Computational Models for Respiratory Aerosol Dynamics with Medical Applications. Computational and Mathematical Methods in Medicine, 2019, 2019, 1-2.	1.3	1
33	Particle scale study on the crystallization of mono-sized cylindrical particles subject to vibration. Powder Technology, 2019, 352, 470-477.	4.2	8
34	Macro- and microscopic analyses of piles formed by Platonic solids. Chemical Engineering Science, 2019, 205, 391-400.	3.8	10
35	Explicit force model for discrete modelling of elliptical particles. Computers and Geotechnics, 2019, 110, 122-131.	4.7	8
36	Particle conveying under microgravity in a vibrating vessel. Advanced Powder Technology, 2019, 30, 3163-3170.	4.1	3

Ke-Jun Dong

#	Article	IF	CITATIONS
37	Numerical investigations on random close packings of cylindrical particles with different aspect ratios. Powder Technology, 2019, 343, 79-86.	4.2	21
38	DEM simulation of binary sphere packing densification under vertical vibration. Particulate Science and Technology, 2018, 36, 672-680.	2.1	15
39	Evaluation of contact force models for discrete modelling of ellipsoidal particles. Chemical Engineering Science, 2018, 177, 1-17.	3.8	29
40	A revisit of common normal method for discrete modelling of non-spherical particles. Powder Technology, 2018, 326, 1-6.	4.2	17
41	Self-assembly of granular spheres under one-dimensional vibration. Soft Matter, 2018, 14, 9856-9869.	2.7	28
42	Discrete particle simulation of particle flow and separation on a vibrating screen: Effect of aperture shape. Powder Technology, 2017, 314, 195-202.	4.2	52
43	The effect of interparticle cohesion on powder mixing in a ribbon mixer. AICHE Journal, 2016, 62, 1023-1037.	3.6	32
44	Voronoi analysis of the packings of non-spherical particles. Chemical Engineering Science, 2016, 153, 330-343.	3.8	43
45	Structural characterization of the packings of granular regular polygons. Physical Review E, 2015, 92, 062203.	2.1	22
46	Numerical Investigation of Burden Distribution in a Blast Furnace. Steel Research International, 2015, 86, 651-661.	1.8	44
47	Formation mechanism of bulk nanocrystalline aluminium with multiply twinned grains by liquid quenching: A molecular dynamics simulation study. Computational Materials Science, 2015, 99, 256-261.	3.0	33
48	A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chemical Engineering Science, 2015, 126, 500-516.	3.8	116
49	Particle dispersion in a horizontally vibrating vessel under microgravity. Powder Technology, 2015, 269, 55-65.	4.2	6
50	Bipolar resistive switching characteristics in LaTiO3 nanosheets. RSC Advances, 2014, 4, 18127.	3.6	9
51	Packing of fine particles in an electrical field. Granular Matter, 2013, 15, 467-476.	2.2	24
52	Effect of gravity on particle dispersion in a horizontally vibrating bed. , 2013, , .		2
53	Impaction of particle streams on a granular bed. , 2013, , .		1
54	DEM study of crystallization of monosized spheres under mechanical vibrations. Computer Physics Communications, 2011, 182, 1989-1994.	7.5	49

#	Article	IF	CITATIONS
55	Size distributions and magic number characteristics of cluster configurations formed during solidification processes of liquid metal Al. Science in China Series D: Earth Sciences, 2006, 49, 172-187.	0.9	4