
Qiong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6732989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The interplay of protein engineering and glycoengineering to fineâ€ŧune antibody glycosylation and its impact on effector functions. Biotechnology and Bioengineering, 2022, 119, 102-117.	3.3	8
2	Interferon-alpha or -beta facilitates SARS-CoV-2 pulmonary vascular infection by inducing ACE2. Angiogenesis, 2022, 25, 225-240.	7.2	27
3	Acute Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Pregnancy Is Associated with Placental Angiotensin-Converting Enzyme 2 Shedding. American Journal of Pathology, 2022, 192, 595-603.	3.8	10
4	Glycoproteomic Characterization of FUT8 Knock-Out CHO Cells Reveals Roles of FUT8 in the Glycosylation. Frontiers in Chemistry, 2021, 9, 755238.	3.6	7
5	The impact of sialylation linkageâ€ŧype on the pharmacokinetics of recombinant butyrylcholinesterases. Biotechnology and Bioengineering, 2020, 117, 157-166.	3.3	5
6	Metabolic engineering challenges of extending N-glycan pathways in Chinese hamster ovary cells. Metabolic Engineering, 2020, 61, 301-314.	7.0	10
7	One-Step Enrichment of Intact Glycopeptides From Glycoengineered Chinese Hamster Ovary Cells. Frontiers in Chemistry, 2020, 8, 240.	3.6	13
8	Design and Production of Bispecific Antibodies. Antibodies, 2019, 8, 43.	2.5	146
9	Characterization of intact glycopeptides reveals the impact of culture media on siteâ€specific glycosylation of EPOâ€Fc fusion protein generated by CHOâ€GS cells. Biotechnology and Bioengineering, 2019, 116, 2303-2315.	3.3	9
10	Combining Butyrated ManNAc with Glycoengineered CHO Cells Improves EPO Glycan Quality and Production. Biotechnology Journal, 2019, 14, 1800186.	3.5	23
11	Antibody glycoengineering strategies in mammalian cells. Biotechnology and Bioengineering, 2018, 115, 1378-1393.	3.3	76
12	Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells. Biotechnology and Bioengineering, 2018, 115, 1531-1541.	3.3	24
13	Glycoengineering of Mammalian Expression Systems on a Cellular Level. Advances in Biochemical Engineering/Biotechnology, 2018, 175, 37-69.	1.1	16
14	Prolineâ€Rich Chaperones Are Compared Computationally and Experimentally for Their Abilities to Facilitate Recombinant Butyrylcholinesterase Tetramerization in CHO Cells. Biotechnology Journal, 2018, 13, e1700479.	3.5	7
15	Comprehensive Glycoproteomic Analysis of Chinese Hamster Ovary Cells. Analytical Chemistry, 2018, 90, 14294-14302.	6.5	42
16	Metabolic engineering of CHO cells to prepare glycoproteins. Emerging Topics in Life Sciences, 2018, 2, 433-442.	2.6	4
17	Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Methods in Molecular Biology, 2018, 1850, 237-257.	0.9	7
18	Glycoengineering of CHO Cells to Improve Product Quality. Methods in Molecular Biology, 2017, 1603, 25-44.	0.9	22

QIONG WANG

#	Article	IF	CITATIONS
19	A novel sugar analog enhances sialic acid production and biotherapeutic sialylation in CHO cells. Biotechnology and Bioengineering, 2017, 114, 1899-1902.	3.3	32
20	Integrated Genome and Protein Editing Swaps <i>î±</i> â€2,6 Sialylation for <i>î±</i> â€2,3 Sialic Acid on Recombinant Antibodies from CHO. Biotechnology Journal, 2017, 12, 1600502.	3.5	38
21	SnapShot: N-Glycosylation Processing Pathways across Kingdoms. Cell, 2017, 171, 258-258.e1.	28.9	71
22	Combinatorial genome and protein engineering yields monoclonal antibodies with hypergalactosylation from CHO cells. Biotechnology and Bioengineering, 2017, 114, 2848-2856.	3.3	32
23	Assessment of the coordinated role of ST3GAL3, ST3GAL4 and ST3GAL6 on the α2,3 sialylation linkage of mammalian glycoproteins. Biochemical and Biophysical Research Communications, 2015, 463, 211-215.	2.1	34
24	Strategies for Engineering Protein N-Glycosylation Pathways in Mammalian Cells. Methods in Molecular Biology, 2015, 1321, 287-305.	0.9	21