Tracy A Valentine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6732958/publications.pdf

Version: 2024-02-01

36 papers

2,877 citations

394421 19 h-index 361022 35 g-index

41 all docs

41 docs citations

41 times ranked 3425 citing authors

#	Article	IF	CITATIONS
1	Drought stress increases the expression of barley defence genes with negative consequences for infesting cereal aphids. Journal of Experimental Botany, 2022, 73, 2238-2250.	4.8	6
2	Variable impacts of reduced and zero tillage on soil carbon storage across 4–10 years of UK field experiments. Journal of Soils and Sediments, 2021, 21, 890-904.	3.0	8
3	The rise, fall and resurrection of chemicalâ€induced resistance agents. Pest Management Science, 2021, 77, 3900-3909.	3.4	28
4	Drought has negative consequences on aphid fitness and plant vigor: Insights from a metaâ€analysis. Ecology and Evolution, 2021, 11, 11915-11929.	1.9	20
5	A fitness cost resulting from <i>Hamiltonella defensa</i> infection is associated with altered probing and feeding behaviour in <i>Rhopalosiphum padi</i> Journal of Experimental Biology, 2020, 223, .	1.7	16
6	The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherryâ€oat aphid, <i>Rhopalosiphum padi</i> . Insect Science, 2020, 27, 69-85.	3.0	39
7	Myxospermous seed-mucilage quantity correlates with environmental gradients indicative of water-deficit stress: Plantago species as a model. Plant and Soil, 2020, 446, 343-356.	3.7	22
8	Identifying Spring Barley Cultivars with Differential Response to Tillage. Agronomy, 2020, 10, 686.	3.0	4
9	Towards a characterisation of the wild legume bitter vetch (<i>Lathyrus linifolius</i> L. (Reichard)) Tj ETQq1 1 0.7 Plant Biology, 2019, 21, 523-532.	784314 rg 3.8	gBT /Overlo <mark>ck</mark> 7
10	Defence gene expression and phloem quality contribute to mesophyll and phloem resistance to aphids in wild barley. Journal of Experimental Botany, 2019, 70, 4011-4026.	4.8	43
11	Soil Nitrogen Status Modifies Rice Root Response to Nematode-Bacteria Interactions in the Rhizosphere. PLoS ONE, 2016, 11, e0148021.	2.5	8
12	Probing soil physical and biological resilience data from a broad sampling of arable farms in Scotland. Soil Use and Management, 2015, 31, 491-503.	4.9	4
13	Degradation rate of soil function varies with trajectory of agricultural intensification. Agriculture, Ecosystems and Environment, 2015, 202, 160-167.	5.3	28
14	Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis. Plant, Cell and Environment, 2015, 38, 1213-1232.	5.7	117
15	Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes (i>in vivo (i>). Plant Signaling and Behavior, 2014, 9, e970421.	2.4	37
16	Root hair length and rhizosheath mass depend on soil porosity, strength and water content in barley genotypes. Planta, 2014, 239, 643-651.	3.2	101
17	Field Phenotyping and Long-Term Platforms to Characterise How Crop Genotypes Interact with Soil Processes and the Environment. Agronomy, 2014, 4, 242-278.	3.0	16
18	Root traits for infertile soils. Frontiers in Plant Science, 2013, 4, 193.	3.6	145

#	Article	IF	Citations
19	Soil strength and macropore volume limit root elongation rates in many UK agricultural soils. Annals of Botany, 2012, 110, 259-270.	2.9	138
20	Transparent Soil for Imaging the Rhizosphere. PLoS ONE, 2012, 7, e44276.	2.5	156
21	Soil tillage effects on the efficacy of cultivars and their mixtures in winter barley. Field Crops Research, 2012, 128, 91-100.	5.1	34
22	Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 2011, 62, 59-68.	4.8	766
23	Automated motion estimation of root responses to sucrose in two Arabidopsis thaliana genotypes using confocal microscopy. Planta, 2011, 234, 769-784.	3.2	17
24	Dwarf alleles differentially affect barley root traits influencing nitrogen acquisition under low nutrient supply. Journal of Experimental Botany, 2011, 62, 3917-3927.	4.8	12
25	PIV as a method for quantifying root cell growth and particle displacement in confocal images. Microscopy Research and Technique, 2010, 73, 27-36.	2.2	20
26	Estimating the motion of plant root cells from in vivo confocal laser scanning microscopy images. Machine Vision and Applications, 2010, 21, 921-939.	2.7	19
27	Sustainable disease control using weeds as indicators: Capsella bursa-pastoris and Tobacco Rattle Virus. Weed Research, 2010, 50, 511-514.	1.7	8
28	Delivery of macromolecules to plant parasitic nematodes using a tobacco rattle virus vector. Plant Biotechnology Journal, 2007, 5, 827-834.	8.3	36
29	Root responses to soil physical conditions; growth dynamics from field to cell. Journal of Experimental Botany, 2006, 57, 437-447.	4.8	399
30	Part-Based Multi-Frame Registration for Estimation of the Growth Of Cellular Networks in Plant Roots. , 2006 , , .		7
31	Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiology Ecology, 2005, 54, 123-130.	2.7	53
32	Efficient Virus-Induced Gene Silencing in Roots Using a Modified Tobacco Rattle Virus Vector. Plant Physiology, 2004, 136, 3999-4009.	4.8	122
33	Functional Analysis of a DNA-Shuffled Movement Protein Reveals That Microtubules Are Dispensable for the Cell-to-Cell Movement of Tobacco mosaic virus. Plant Cell, 2002, 14, 1207-1222.	6.6	178
34	Inhibition of tobacco mosaic virus replication in lateral roots is dependent on an activated meristem-derived signal. Protoplasma, 2002, 219, 184-196.	2.1	28
35	Soluble Signals from Cells Identified at the Cell Wall Establish a Developmental Pathway in Carrot. Plant Cell, 1997, 9, 2225.	6.6	36
36	Soluble Signals from Cells Identified at the Cell Wall Establish a Developmental Pathway in Carrot Plant Cell, 1997, 9, 2225-2241.	6.6	198