Yiping Shu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6732668/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2015, 219, 12.	7.7	1,877
2	SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS. Astronomical Journal, 2011, 142, 72.	4.7	1,700
3	THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III. Astronomical Journal, 2013, 145, 10.	4.7	1,571
4	THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. Astrophysical Journal, Supplement Series, 2012, 203, 21.	7.7	1,158
5	THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA. Astronomical Journal, 2016, 151, 44.	4.7	582
6	SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. Astronomical Journal, 2012, 144, 144.	4.7	505
7	THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE. Astrophysical Journal, 2012, 757, 82.	4.5	104
8	THE SLOAN LENS ACS SURVEY. XII. EXTENDING STRONG LENSING TO LOWER MASSES. Astrophysical Journal, 2015, 803, 71.	4.5	77
9	The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses ^{â^—} . Astrophysical Journal, 2017, 851, 48.	4.5	74
10	THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE*. Astrophysical Journal, 2016, 833, 264.	4.5	68
11	Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	68
12	THE BOSS EMISSION-LINE LENS SURVEY. III. STRONG LENSING OF Lyα EMITTERS BY INDIVIDUAL GALAXIES. Astrophysical Journal, 2016, 824, 86.	4.5	55
13	Catalogues of active galactic nuclei from Gaia and unWISE data. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4741-4759.	4.4	42
14	Assessing the effect of lens mass model in cosmological application with updated galaxy-scale strong gravitational lensing sample. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3745-3758.	4.4	41
15	EVOLUTION OF THE VELOCITY-DISPERSION FUNCTION OF LUMINOUS RED GALAXIES: A HIERARCHICAL BAYESIAN MEASUREMENT. Astronomical Journal, 2012, 143, 90.	4.7	31
16	Strong-lensing measurement of the total-mass-density profile out to three effective radii for z â^1⁄4 0.5 early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 431-438.	4.4	29
17	The BOSS Emission-line Lens Survey. V. Morphology and Substructure of Lensed Lyα Emitters at Redshift ZÂâ‰^Â2.5 in the BELLS GALLERY. Astrophysical Journal, 2018, 853, 148.	4.5	23
18	KILOPARSEC MASS/LIGHT OFFSETS IN THE GALAXY PAIR-Lyα EMITTER LENS SYSTEM SDSS J1011+0143*. Astrophysical Journal, 2016, 820, 43.	4.5	22

YIPING SHU

#	Article	IF	CITATIONS
19	Prediction of Supernova Rates in Known Galaxy–Galaxy Strong-lens Systems. Astrophysical Journal, 2018, 864, 91.	4.5	21
20	HOLISMOKES. Astronomy and Astrophysics, 2021, 653, L6.	5.1	19
21	SDSS J0909+4449: A large-separation strongly lensed quasar at <i>z</i> Ââ^¼Â2.8 with three images. Month Notices of the Royal Astronomical Society: Letters, 2018, 481, L136-L140.	ly _{3.3}	18
22	The discovery of the most UV–Ly α luminous star-forming galaxy: a young, dust- and metal-poor starburst with QSO-like luminosities. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 499, L105-L110.	3.3	13
23	HOLISMOKES. Astronomy and Astrophysics, 2022, 662, A4.	5.1	13
24	Discovery of a Very Bright and Intrinsically Very Luminous, Strongly Lensed Lyα Emitting Galaxy at z = 2.82 in the BOSS Emission-Line Lens Survey*. Astrophysical Journal Letters, 2017, 834, L18.	8.3	12
25	The Strong Gravitationally Lensed Herschel Galaxy HLock01: Optical Spectroscopy Reveals a Close Galaxy Merger with Evidence of Inflowing Gas. Astrophysical Journal, 2018, 854, 151.	4.5	11
26	Discovery of a giant and luminous Ly <i>α</i> +C†IV+He†II nebula at <i>z</i> = 3.326 with extreme emission line ratios. Astronomy and Astrophysics, 2019, 629, A23.	5.1	11
27	LESSER: a catalogue of spectroscopically selected sample of Lyman-α emitters lensed by galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3610-3619.	4.4	11
28	An Accurate Analytic Mass Model for Lensing Galaxies. Astrophysical Journal, 2020, 892, 62.	4.5	11
29	Rest-frame UV properties of luminous strong gravitationally lensed Ly $\hat{l}\pm$ emitters from the BELLS GALLERY Survey. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1257-1278.	4.4	11
30	Using deep Residual Networks to search for galaxy-LyÂα emitter lens candidates based on spectroscopic selection. Monthly Notices of the Royal Astronomical Society, 2019, 482, 313-320.	4.4	10
31	A direct measurement of the high-mass end of the velocity dispersion function at zÂâ^1⁄4Â0.55 from SDSS-III/BOSS. Monthly Notices of the Royal Astronomical Society, 2017, 468, 47-58.	4.4	9
32	Discovering strongly lensed QSOs from unresolved light curves. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2912-2921.	4.4	9
33	FRBs Lensed by Point Masses I. Lens Mass Estimation for Doubly Imaged FRBs. Astrophysical Journal, 2021, 912, 134.	4.5	7
34	SDSSÂJ1640+1932: a spectacular galaxy–quasar strong lens system. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3757-3763.	4.4	5
35	Discovery of two bright high-redshift gravitationally lensed quasars revealed by <i>Gaia</i> . Monthly Notices of the Royal Astronomical Society, 2021, 509, 738-747.	4.4	5
36	FRBs Lensed by Point Masses. II. The Multipeaked FRBs from the Point View of Microlensing. Astrophysical Journal, 2021, 923, 117.	4.5	5

#	Article	IF	CITATIONS
37	The Discrepancy between Einstein Mass and Dynamical Mass for SIS and Power-law Mass Models. Astrophysical Journal, 2018, 855, 64.	4.5	2