Suresh K

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6732208/publications.pdf

Version: 2024-02-01

567144 552653 52 744 15 26 citations h-index g-index papers 57 57 57 624 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Proximative and Contrastive Study of Malachite Green Dye Degradation Using Microplasma Discharge With Postliminary Phytotoxicity Analysis. IEEE Transactions on Plasma Science, 2021, 49, 597-603.	0.6	4
2	Electrochemical prospects and potential of hausmannite <scp> Mn ₃ O ₄ </scp> nanoparticles synthesized through microplasma discharge for supercapacitor applications. International Journal of Energy Research, 2021, 45, 7038-7056.	2.2	18
3	Enhanced electrochemical detection of dopamine by graphene oxide/tungsten trioxide nanocomposite. Materials Science in Semiconductor Processing, 2021, 127, 105696.	1.9	27
4	Process and kinetics of dye degradation using microplasma and its feasibility in textile effluent detoxification. Journal of Water Process Engineering, 2020, 37, 101519.	2.6	15
5	Thermomechanical Processing of AZ31-3Ca Alloy Prepared by Disintegrated Melt Deposition (DMD). Crystals, 2020, 10, 647.	1.0	4
6	Feasible production of hydrogen from methanol reforming through single stage DC microplasma reactor. International Journal of Modern Physics B, 2020, 34, 2050108.	1.0	2
7	Relative Potential of Different Plasma Forming Gases in Degradation of Rhodamine B Dye by Microplasma Treatment and Evaluation of Reuse Prospectus for Treated Water as Liquid Fertilizer. Plasma Chemistry and Plasma Processing, 2020, 40, 1267-1290.	1.1	17
8	Hierarchical \hat{l}_{\pm} -MnO2 wrapped MWCNTs sensor for low level detection of p-nitrophenol in water. Ceramics International, 2019, 45, 23097-23103.	2.3	37
9	Preparation, characterization and comparative electrochemical studies of MgMXMn2-XO4 (x=0, 0.5;) Tj ETQq1	1 0.7.8431	14 rgBT /Ove <mark>rlo</mark>
10	High Temperature Deformation Behavior and Processing Maps of AZ31 Alloy Deformed in Tension versus Compression. Key Engineering Materials, 2019, 794, 305-314.	0.4	0
10		0.4	0
	versus Compression. Key Engineering Materials, 2019, 794, 305-314. Forging of Mg–3Sn–2Ca–0.4Al Alloy Assisted by Its Processing Map and Validation Through Analytical		
11	versus Compression. Key Engineering Materials, 2019, 794, 305-314. Forging of Mg–3Sn–2Ca–0.4Al Alloy Assisted by Its Processing Map and Validation Through Analytical Modeling. Minerals, Metals and Materials Series, 2019, , 313-318. Textural Changes in Hot Compression of Disintegrated Melt Deposition (DMD)–Processed AZ31-1Ca-1.5	0.3	0
11 12	versus Compression. Key Engineering Materials, 2019, 794, 305-314. Forging of Mg–3Sn–2Ca–0.4Al Alloy Assisted by Its Processing Map and Validation Through Analytical Modeling. Minerals, Metals and Materials Series, 2019, , 313-318. Textural Changes in Hot Compression of Disintegrated Melt Deposition (DMD)–Processed AZ31-1Ca-1.5 vol. % Nano-Alumina Composite. Materials Performance and Characterization, 2019, 8, 766-781. Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D).	0.3	0
11 12 13	versus Compression. Key Engineering Materials, 2019, 794, 305-314. Forging of Mg–3Sn–2Ca–0.4Al Alloy Assisted by Its Processing Map and Validation Through Analytical Modeling. Minerals, Metals and Materials Series, 2019, , 313-318. Textural Changes in Hot Compression of Disintegrated Melt Deposition (DMD)–Processed AZ31-1Ca-1.5 vol. % Nano-Alumina Composite. Materials Performance and Characterization, 2019, 8, 766-781. Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D). Journal of Materials Engineering and Performance, 2018, 27, 1440-1449. Development and comparison of processing maps of Mg-3Sn-1Ca alloy from data obtained in tension	0.3	0 0
11 12 13	versus Compression. Key Engineering Materials, 2019, 794, 305-314. Forging of Mg–3Sn–2Ca–0.4Al Alloy Assisted by Its Processing Map and Validation Through Analytical Modeling. Minerals, Metals and Materials Series, 2019, , 313-318. Textural Changes in Hot Compression of Disintegrated Melt Deposition (DMD)–Processed AZ31-1Ca-1.5 vol. % Nano-Alumina Composite. Materials Performance and Characterization, 2019, 8, 766-781. Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D). Journal of Materials Engineering and Performance, 2018, 27, 1440-1449. Development and comparison of processing maps of Mg-3Sn-1Ca alloy from data obtained in tension versus compression. IOP Conference Series: Materials Science and Engineering, 2018, 297, 012014. Hot forging of Mg-4Al-2Ba-2Ca (ABaX422) alloy and validation of processing map. Transactions of	0.3 0.2 1.2 0.3	0 0 1 2
11 12 13 14	Forging of Mg–3Sn–2Ca–0.4Al Alloy Assisted by Its Processing Map and Validation Through Analytical Modeling. Minerals, Metals and Materials Series, 2019, , 313-318. Textural Changes in Hot Compression of Disintegrated Melt Deposition (DMD)–Processed AZ31-1Ca-1.5 vol. % Nano-Alumina Composite. Materials Performance and Characterization, 2019, 8, 766-781. Deformation Mechanisms and Formability Window for As-Cast Mg-6Al-2Ca-1Sn-0.3Sr Alloy (MRI 230D). Journal of Materials Engineering and Performance, 2018, 27, 1440-1449. Development and comparison of processing maps of Mg-3Sn-1Ca alloy from data obtained in tension versus compression. IOP Conference Series: Materials Science and Engineering, 2018, 297, 012014. Hot forging of Mg-4Al-2Ba-2Ca (ABaX422) alloy and validation of processing map. Transactions of Nonferrous Metals Society of China, 2018, 28, 1495-1503. Effect of Calcium on the Hot Working Behavior of AZ31-1.5 vol.% Nano-Alumina Composite Prepared by	0.3 0.2 1.2 0.3	0 0 1 2 8

#	Article	IF	Citations
19	Hot Deformation Behavior and Processing Map of Mg-3Sn-2Ca-0.4Al-0.4Zn Alloy. Metals, 2018, 8, 216.	1.0	9
20	Enhancement of Strength and Hot Workability of AZX312 Magnesium Alloy by Disintegrated Melt Deposition (DMD) Processing in Contrast to Permanent Mold Casting. Metals, 2018, 8, 437.	1.0	6
21	A Comparative Study on the Microstructure, Mechanical Properties, and Hot Deformation of Magnesium Alloys Containing Zinc, Calcium and Yttrium. Minerals, Metals and Materials Series, 2017, , 449-461.	0.3	1
22	High Temperature Strength and Hot Working Technology for As-Cast Mg–1Zn–1Ca (ZX11) Alloy. Metals, 2017, 7, 405.	1.0	8
23	Mechanism of Dynamic Recrystallization and Evolution of Texture in the Hot Working Domains of the Processing Map for Mg-4Al-2Ba-2Ca Alloy. Metals, 2017, 7, 539.	1.0	6
24	Forging of cast Mg-3Sn-2Ca-0.4Al-0.4Si magnesium alloy using processing map. Journal of Mechanical Science and Technology, 2016, 30, 2699-2705.	0.7	5
25	Microstructure and Properties of Magnesium Alloy Mg-1Zn-1Ca (ZX11)., 2015, , 419-423.		2
26	Hot working mechanisms in DMD-processed versus cast AZ31–1 wt% Ca alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 184-193.	2.6	15
27	Processing Map of AZ31-1Ca-1.5 vol.% Nano-Alumina Composite for Hot Working. Materials and Manufacturing Processes, 2015, 30, 1161-1167.	2.7	13
28	Investigation of hot workability behavior of as-cast Mg–5Sn–2Ca (TX52) magnesium alloy through processing map. Production and Manufacturing Research, 2014, 2, 241-252.	0.9	3
29	Study of hot forging behavior of as-cast Mg–3Al–1Zn–2Ca alloy towards optimization of its hot workability. Materials & Design, 2014, 57, 697-704.	5.1	34
30	A Study on the Hot Deformation Behavior of Cast Mg-4Sn-2Ca (TX42) Alloy. Jom, 2014, 66, 322-328.	0.9	5
31	Microstructure and mechanical properties of as-cast Mg–Sn–Ca alloys and effect of alloying elements. Transactions of Nonferrous Metals Society of China, 2013, 23, 3604-3610.	1.7	36
32	Sliding wear behavior of gas tunnel type plasma sprayed Ni-based metallic glass composite coatings. Vacuum, 2013, 88, 114-117.	1.6	21
33	Characterization of gas tunnel type plasma sprayed TiN reinforced Fe-based metallic glass coatings. Journal of Alloys and Compounds, 2013, 551, 168-175.	2.8	41
34	Effect of calcium addition on the hot working behavior of as-cast AZ31 magnesium alloy. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 588, 272-279.	2.6	25
35	Compressive strength and hot deformation mechanisms in as-cast Mg-4Al-2Ba-2Ca (ABaX422) alloy. Philosophical Magazine, 2013, 93, 4364-4377.	0.7	16
36	Effect of operating parameters on the formation of nickel aluminate spinel through transferred ARC plasma torch. , 2012 , , .		0

#	Article	IF	CITATIONS
37	Performance study of wear resistance and solid lubricant surface coatings on textile machinery components. Composite Interfaces, 2012, 19, 239-249.	1.3	1
38	Wear behavior of gas tunnel type plasma sprayed Zr-based metallic glass composite coatings. Applied Surface Science, 2012, 258, 8460-8468.	3.1	30
39	Hot deformation behavior of Mg–2Sn–2Ca alloy in as-cast condition and after homogenization. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 444-450.	2.6	48
40	Anisotropy of flow during isothermal forging of rolled AZ31B magnesium alloy rolled plate in three orthogonal directions: Correlation with processing maps. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2012, 558, 30-38.	2.6	14
41	Hot working behavior and processing map of a \hat{I}^3 -TiAl alloy synthesized by powder metallurgy. Materials & Design, 2011, 32, 4874-4881.	5.1	97
42	Synthesis of mullite from sillimanite dissociation through transferred arc plasma torch. International Journal of Mineral Processing, 2011, 99, 54-60.	2.6	12
43	Materials modeling and simulation of isothermal forging of rolled AZ31B magnesium alloy: Anisotropy of flow. Materials & Design, 2011, 32, 2545-2553.	5.1	59
44	Anisotropy of Flow during Forging of Rolled AZ31B Plate in Transverse Direction. Materials Science Forum, 2011, 690, 57-60.	0.3	2
45	Effect of Minor Additions of Al and Si on the Mechanical Properties of Cast Mg-3Sn-2Ca Alloys in Low Temperature Range. Materials Science Forum, 2010, 654-656, 635-638.	0.3	9
46	Study on the Effect of Base Pressure on Magnetron Sputtering Discharge Plasma by Optical Emission Spectroscopy. Plasma Science and Technology, 2010, 12, 35-40.	0.7	3
47	Synthesis of Mullite by Means of Transferred and Nontransferred Arc Plasma Melting. Materials and Manufacturing Processes, 2010, 25, 909-914.	2.7	6
48	Effects of plasma parameters and collection region on synthesis of iron and nickel aluminide composite particles during thermal plasma processing. Journal of Physics: Conference Series, 2010, 208, 012118.	0.3	2
49	Synthesis and characterization of iron aluminide nanoparticles by DC thermal plasma jet. Vacuum, 2008, 82, 482-490.	1.6	9
50	Synthesis of nanophase alumina, and spheroidization of alumina particles, and phase transition studies through DC thermal plasma processing. Vacuum, 2008, 82, 814-820.	1.6	31
51	Hot Forging of Cast Magnesium Alloy TX31 Using Semi-Closed Die and its Finite Element Simulation. Materials Science Forum, 0, 783-786, 449-454.	0.3	1
52	Degradation of Methylene Blue Using Microplasma Discharge – A Relative Study with Photodegradation. Frontiers in Advanced Materials Research, 0, , 26-35.	0.2	0