
Chaoliang He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/673174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Polymer Topology and Residue Chirality on Biodegradability of Polypeptide Hydrogels. ACS Biomaterials Science and Engineering, 2022, 8, 626-637.	5.2	4
2	Enhanced antitumor chemoâ€immunotherapy by local coâ€delivery of chemotherapeutics, immune checkpoint blocking antibody and <scp>IDO</scp> inhibitor using an injectable polypeptide hydrogel. Journal of Polymer Science, 2022, 60, 1595-1609.	3.8	9
3	Recent advances in organic and polymeric carriers for local tumor chemo-immunotherapy. Science China Technological Sciences, 2022, 65, 1011-1028.	4.0	7
4	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	8.2	85
5	Mucoadhesive, Antibacterial, and Reductive Nanogels as a Mucolytic Agent for Efficient Nebulized Therapy to Combat Allergic Asthma. ACS Nano, 2022, 16, 11161-11173.	14.6	14
6	A fast and versatile cross-linking strategy via <i>o</i> -phthalaldehyde condensation for mechanically strengthened and functional hydrogels. National Science Review, 2021, 8, nwaa128.	9.5	32
7	Biopolymer Immune Implants' Sequential Activation of Innate and Adaptive Immunity for Colorectal Cancer Postoperative Immunotherapy. Advanced Materials, 2021, 33, e2004559.	21.0	60
8	Influence of residual chirality on the conformation and enzymatic degradation of glycopolypeptide based biomaterials. Science China Technological Sciences, 2021, 64, 641-650.	4.0	6
9	Physiologically relevant pH- and temperature-responsive polypeptide hydrogels with adhesive properties. Polymer Chemistry, 2021, 12, 2832-2839.	3.9	13
10	Injectable Hydrogels as Local Depots at Tumor Sites for Antitumor Immunotherapy and Immuneâ€Based Combination Therapy. Macromolecular Bioscience, 2021, 21, e2100039.	4.1	34
11	Design of an Injectable Polypeptide Hydrogel Depot Containing the Immune Checkpoint Blocker Antiâ€PDâ€L1 and Doxorubicin to Enhance Antitumor Combination Therapy. Macromolecular Bioscience, 2021, 21, e2100049.	4.1	20
12	Matrix metalloproteinase-sensitive poly(ethylene glycol)/peptide hydrogels as an interactive platform conducive to cell proliferation during 3D cell culture. Science China Technological Sciences, 2021, 64, 1285-1294.	4.0	11
13	Localized Chemotherapy Based on Injectable Hydrogel Boosts the Antitumor Activity of Adoptively Transferred T Lymphocytes In Vivo. Advanced Healthcare Materials, 2021, 10, e2100814.	7.6	16
14	Rapidly Thermoreversible and Biodegradable Polypeptide Hydrogels with Sol–Gel–Sol Transition Dependent on Subtle Manipulation of Side Groups. Biomacromolecules, 2021, 22, 3522-3533.	5.4	17
15	A pHâ€Triggered Selfâ€Unpacking Capsule Containing Zwitterionic Hydrogel oated MOF Nanoparticles for Efficient Oral Exendinâ€4 Delivery. Advanced Materials, 2021, 33, e2102044.	21.0	64
16	Crucial Impact of Residue Chirality on the Gelation Process and Biodegradability of Thermoresponsive Polypeptide Hydrogels. Biomacromolecules, 2021, 22, 3992-4003.	5.4	14
17	Biocompatible in situ-forming glycopolypeptide hydrogels. Science China Technological Sciences, 2020, 63, 992-1004.	4.0	6
18	Bioactive polypeptide hydrogels modified with RGD and N-cadherin mimetic peptide promote chondrogenic differentiation of bone marrow mesenchymal stem cells. Science China Chemistry, 2020, 63, 1100-1111.	8.2	26

#	Article	IF	CITATIONS
19	<p>Engineering Thermo-pH Dual Responsive Hydrogel for Enhanced Tumor Accumulation, Penetration, and Chemo-Protein Combination Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 4739-4752.	6.7	9
20	Thermosensitive Polypeptide Hydrogels Co‣oaded with Two Antiâ€Tumor Agents to Reduce Multiâ€Drug Resistance and Enhance Local Tumor Treatment. Advanced Therapeutics, 2020, 3, 1900165.	3.2	11
21	Effects of ethyl-L-glutamated and phenylalanine ratio/sequence on the secondary structure and gelation properties of their PEGylated copolymers. Polymer, 2020, 191, 122276.	3.8	7
22	A Nanocomposite Vehicle Based on Metal–Organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery. ACS Applied Materials & Interfaces, 2020, 12, 22581-22592.	8.0	67
23	Injectable Click Polypeptide Hydrogels via Tetrazine-Norbornene Chemistry for Localized Cisplatin Release. Polymers, 2020, 12, 884.	4.5	10
24	Enhanced local cancer therapy using a CA4P and CDDP co-loaded polypeptide gel depot. Biomaterials Science, 2019, 7, 860-866.	5.4	37
25	pH- and Amylase-Responsive Carboxymethyl Starch/Poly(2-isobutyl-acrylic acid) Hybrid Microgels as Effective Enteric Carriers for Oral Insulin Delivery. Biomacromolecules, 2018, 19, 2123-2136.	5.4	44
26	Biomaterials-enabled cornea regeneration in patients at high risk for rejection of donor tissue transplantation. Npj Regenerative Medicine, 2018, 3, 2.	5.2	76
27	DOX/IL-2/IFN-Î ³ co-loaded thermo-sensitive polypeptide hydrogel for efficient melanoma treatment. Bioactive Materials, 2018, 3, 118-128.	15.6	79
28	Injectable Hydrogels as Unique Platforms for Local Chemotherapeuticsâ€Based Combination Antitumor Therapy. Macromolecular Bioscience, 2018, 18, e1800240.	4.1	65
29	Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications. Materials Chemistry Frontiers, 2018, 2, 1765-1778.	5.9	86
30	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Advanced Materials, 2018, 30, e1801527.	21.0	233
31	Dual Stimuli-Responsive Nanoparticle-Incorporated Hydrogels as an Oral Insulin Carrier for Intestine-Targeted Delivery and Enhanced Paracellular Permeation. ACS Biomaterials Science and Engineering, 2018, 4, 2889-2902.	5.2	35
32	Injectable Enzymatically Crossâ€linked Hydrogels with Lightâ€Controlled Degradation Profile. Macromolecular Rapid Communications, 2018, 39, e1800272.	3.9	21
33	Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. Journal of Controlled Release, 2017, 255, 81-93.	9.9	99
34	Injectable Polysaccharide Hydrogels as Biocompatible Platforms for Localized and Sustained Delivery of Antibiotics for Preventing Local Infections. Macromolecular Bioscience, 2017, 17, 1600347.	4.1	34
35	Injectable Polypeptide Hydrogel as Biomimetic Scaffolds with Tunable Bioactivity and Controllable Cell Adhesion. Biomacromolecules, 2017, 18, 1411-1418.	5.4	57
36	Synthesis of novel thermo- and redox-sensitive polypeptide hydrogels. Polymer International, 2017, 66, 712-718.	3.1	8

#	Article	IF	CITATIONS
37	Enzymatically crosslinked hydrogels based on linear poly(ethylene glycol) polymer: performance and mechanism. Polymer Chemistry, 2017, 8, 7017-7024.	3.9	20
38	Injectable Thermosensitive Polypeptide-Based CDDP-Complexed Hydrogel for Improving Localized Antitumor Efficacy. Biomacromolecules, 2017, 18, 4341-4348.	5.4	33
39	Thermosensitive Polypeptide Hydrogels as a Platform for ROSâ€Triggered Cargo Release with Innate Cytoprotective Ability under Oxidative Stress. Advanced Healthcare Materials, 2016, 5, 1979-1990.	7.6	68
40	PCL–F68–PCL/PLGA–PEG–PLGA mixed micelles mediated delivery of mitoxantrone for reversing multidrug resistant in breast cancer. RSC Advances, 2016, 6, 35318-35327.	3.6	7
41	Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. Journal of Controlled Release, 2016, 231, 94-102.	9.9	54
42	<i>N</i> -Isopropylacrylamide Modified Polyethylenimines as Effective siRNA Carriers for Cancer Therapy. Journal of Nanoscience and Nanotechnology, 2016, 16, 5464-5469.	0.9	6
43	Injectable Polypeptide Hydrogels with Tunable Microenvironment for 3D Spreading and Chondrogenic Differentiation of Bone-Marrow-Derived Mesenchymal Stem Cells. Biomacromolecules, 2016, 17, 3862-3871.	5.4	58
44	Injectable, Biomolecule-Responsive Polypeptide Hydrogels for Cell Encapsulation and Facile Cell Recovery through Triggered Degradation. ACS Applied Materials & Interfaces, 2016, 8, 30692-30702.	8.0	58
45	Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science, 2016, 60, 86-128.	24.7	257
46	Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromolecular Bioscience, 2016, 16, 635-646.	4.1	282
47	Co-delivery of chemotherapeutics and proteins for synergistic therapy. Advanced Drug Delivery Reviews, 2016, 98, 64-76.	13.7	178
48	Synergistic therapeutic effects of Schiff's base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model. Biomaterials, 2016, 75, 148-162.	11.4	157
49	In-situ forming glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering. Journal of Controlled Release, 2015, 213, e64-e65.	9.9	2
50	Nanogelâ€Incorporated Physical and Chemical Hybrid Gels for Highly Effective Chemo–Protein Combination Therapy. Advanced Functional Materials, 2015, 25, 6744-6755.	14.9	90
51	Targeted dextran-b-poly(ε-caprolactone) micelles for cancer treatments. RSC Advances, 2015, 5, 18593-18600.	3.6	17
52	Fabrication of modular multifunctional delivery for antitumor drugs based on host–guest recognition. Acta Biomaterialia, 2015, 18, 168-175.	8.3	13
53	Localized Co-delivery of Doxorubicin, Cisplatin, and Methotrexate by Thermosensitive Hydrogels for Enhanced Osteosarcoma Treatment. ACS Applied Materials & Interfaces, 2015, 7, 27040-27048.	8.0	134
54	pH and reduction-sensitive disulfide cross-linked polyurethane micelles for bio-triggered anti-tumor drug delivery. Journal of Controlled Release, 2015, 213, e99-e100.	9.9	6

#	Article	IF	CITATIONS
55	Injectable glycopolypeptide hydrogels as biomimetic scaffolds forÂcartilage tissue engineering. Biomaterials, 2015, 51, 238-249.	11.4	217
56	5-Fluorouracil loaded thermosensitive PLGA–PEG–PLGA hydrogels for the prevention of postoperative tendon adhesion. RSC Advances, 2015, 5, 25295-25303.	3.6	22
57	Dual pH-responsive mesoporous silica nanoparticles for efficient combination of chemotherapy and photodynamic therapy. Journal of Materials Chemistry B, 2015, 3, 4707-4714.	5.8	52
58	pH-Responsive Poly(ethylene glycol)/Poly(<scp>l</scp> -lactide) Supramolecular Micelles Based on Host–Guest Interaction. ACS Applied Materials & Interfaces, 2015, 7, 8404-8411.	8.0	72
59	Injectable polysaccharide hybrid hydrogels as scaffolds for burn wound healing. RSC Advances, 2015, 5, 94248-94256.	3.6	56
60	PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA–PEG–PLGA hydrogels for localized and combined treatment of human osteosarcoma. Journal of Controlled Release, 2015, 213, e18.	9.9	8
61	Surface modification of 316L stainless steel by grafting methoxy poly(ethylene glycol) to improve the biocompatibility. Chemical Research in Chinese Universities, 2015, 31, 651-657.	2.6	16
62	pH-responsive metallo-supramolecular nanogel for synergistic chemo-photodynamic therapy. Acta Biomaterialia, 2015, 25, 162-171.	8.3	41
63	Functional fabrication of recombinant human collagen–phosphorylcholine hydrogels for regenerative medicine applications. Acta Biomaterialia, 2015, 12, 70-80.	8.3	88
64	ε-Methacryloyl- <scp>l</scp> -lysine based polypeptides and their thiol–ene click functionalization. Polymer Chemistry, 2015, 6, 1758-1767.	3.9	13
65	High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications. Acta Biomaterialia, 2015, 11, 183-190.	8.3	58
66	Hydrophobic Polyalanine Modified Hyperbranched Polyethylenimine as High Efficient pDNA and siRNA Carrier. Macromolecular Bioscience, 2014, 14, 1406-1414.	4.1	21
67	Metallo‣upramolecular Nanogels for Intracellular pHâ€Responsive Drug Release. Macromolecular Rapid Communications, 2014, 35, 1697-1705.	3.9	11
68	Side chain impacts on pH- and thermo-responsiveness of tertiary amine functionalized polypeptides. Journal of Polymer Science Part A, 2014, 52, 671-679.	2.3	24
69	Thermo-/pH-dual responsive properties of hyperbranched polyethylenimine grafted by phenylalanine. Archives of Pharmacal Research, 2014, 37, 142-148.	6.3	6
70	Biodegradable, p <scp>H</scp> â€ <scp>R</scp> esponsive Carboxymethyl Cellulose/ <scp>P</scp> oly(<scp>A</scp> crylic Acid) Hydrogels for Oral Insulin Delivery. Macromolecular Bioscience, 2014, 14, 565-575.	4.1	121
71	Injectable enzymatically crosslinked hydrogels based on a poly(<scp>l</scp> -glutamic acid) graft copolymer. Polymer Chemistry, 2014, 5, 5069-5076.	3.9	62
72	Dual responsive supramolecular nanogels for intracellular drug delivery. Chemical Communications, 2014, 50, 3789.	4.1	70

#	Article	IF	CITATIONS
73	pH and reduction dual responsive cross-linked polyurethane micelles as an intracellular drug delivery system. RSC Advances, 2014, 4, 63070-63078.	3.6	16
74	Core-cross-linked micellar nanoparticles from a linear-dendritic prodrug for dual-responsive drug delivery. Polymer Chemistry, 2014, 5, 2801-2808.	3.9	53
75	Boronic Acid Shell-Crosslinked Dextran- <i>b-</i> PLA Micelles for Acid-Responsive Drug Delivery. Macromolecular Bioscience, 2014, 14, 1609-1618.	4.1	39
76	PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. Biomaterials, 2014, 35, 8723-8734.	11.4	136
77	Intracellular pH-Sensitive Metallo-Supramolecular Nanogels for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2014, 6, 7816-7822.	8.0	49
78	Disulfide Crossâ€Linked Polyurethane Micelles as a Reductionâ€Triggered Drug Delivery System for Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 752-760.	7.6	105
79	Intercellular pH-responsive histidine modified dextran-g-cholesterol micelle for anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 121, 36-43.	5.0	33
80	Biodegradable PLGA Microspheres for Controlled Delivery of Parathyroid Hormone Related Peptide. Acta Polymerica Sinica, 2014, 014, 270-275.	0.0	2
81	Redox-Sensitive Shell-Crosslinked Polypeptide <i>-block-</i> Polysaccharide Micelles for Efficient Intracellular Anticancer Drug Delivery. Macromolecular Bioscience, 2013, 13, 1249-1258.	4.1	56
82	Thermosensitive hydrogels based on polypeptides for localized and sustained delivery of anticancer drugs. Biomaterials, 2013, 34, 10338-10347.	11.4	109
83	Intracellular pH-Sensitive PEG- <i>block</i> -Acetalated-Dextrans as Efficient Drug Delivery Platforms. ACS Applied Materials & Interfaces, 2013, 5, 10760-10766.	8.0	91
84	Biodegradable Stereocomplex Micelles Based on Dextran- <i>block</i> -polylactide as Efficient Drug Deliveries. Langmuir, 2013, 29, 13072-13080.	3.5	75
85	pH- and thermo-responsive poly(N-isopropylacrylamide-co-acrylic acid derivative) copolymers and hydrogels with LCST dependent on pH and alkyl side groups. Journal of Materials Chemistry B, 2013, 1, 5578.	5.8	127
86	Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. Journal of Controlled Release, 2013, 169, 193-203.	9.9	89
87	Biodegradable pH-responsive polyacrylic acid derivative hydrogels with tunable swelling behavior for oral delivery of insulin. Polymer, 2013, 54, 1786-1793.	3.8	126
88	The effect of alkyl side groups on the secondary structure and crystallization of poly(ethylene) Tj ETQq0 0 0 rgB	T /Qvgrlocł	۶ 10 Tf 50 14
89	Disulfide crosslinked PEGylated starch micelles as efficient intracellular drug delivery platforms. Soft Matter, 2013, 9, 2224.	2.7	122

90Biocompatible reduction-responsive polypeptide micelles as nanocarriers for enhanced chemotherapy
efficacy in vitro. Journal of Materials Chemistry B, 2013, 1, 69-81.5.8141

#	Article	IF	CITATIONS
91	Intracellular pH-sensitive supramolecular amphiphiles based on host–guest recognition between benzimidazole and β-cyclodextrin as potential drug delivery vehicles. Polymer Chemistry, 2013, 4, 3265.	3.9	89
92	pH and reduction dual responsive polyurethane triblock copolymers for efficient intracellular drug delivery. Soft Matter, 2013, 9, 2637.	2.7	103
93	Reduction-responsive cross-linked micelles based on PEGylated polypeptides prepared via click chemistry. Polymer Chemistry, 2013, 4, 3851.	3.9	51
94	Versatile Biofunctionalization of Polypeptide-Based Thermosensitive Hydrogels via Click Chemistry. Biomacromolecules, 2013, 14, 468-475.	5.4	61
95	Synthesis of pH-responsive starch nanoparticles grafted poly (l-glutamic acid) for insulin controlled release. European Polymer Journal, 2013, 49, 2082-2091.	5.4	52
96	Coâ€delivery of 10â€Hydroxycamptothecin with Doxorubicin Conjugated Prodrugs for Enhanced Anticancer Efficacy. Macromolecular Bioscience, 2013, 13, 584-594.	4.1	63
97	PROGRESS IN THE DEVELOPMENT OF BIOMEDICAL POLYMER MATERIALS FABRICATED BY 3-DIMENSIONAL PRINTING TECHNOLOGY. Acta Polymerica Sinica, 2013, 013, 722-732.	0.0	4
98	Intracellular microenvironment responsive PEGylated polypeptide nanogels with ionizable cores for efficient doxorubicin loading and triggered release. Journal of Materials Chemistry, 2012, 22, 14168.	6.7	132
99	Novel thermo- and pH-responsive hydroxypropyl cellulose- and poly (l-glutamic acid)-based microgels for oral insulin controlled release. Carbohydrate Polymers, 2012, 89, 1207-1214.	10.2	64
100	Thermo―and pHâ€responsive microgels for controlled release of insulin. Polymer International, 2012, 61, 1151-1157.	3.1	5
101	Biodegradable pHâ€Đependent Thermoâ€5ensitive Hydrogels for Oral Insulin Delivery. Macromolecular Chemistry and Physics, 2012, 213, 713-719.	2.2	7
102	Stimuli‧ensitive Synthetic Polypeptideâ€Based Materials for Drug and Gene Delivery. Advanced Healthcare Materials, 2012, 1, 48-78.	7.6	307
103	Decisive Role of Hydrophobic Side Groups of Polypeptides in Thermosensitive Gelation. Biomacromolecules, 2012, 13, 2053-2059.	5.4	97
104	pH-responsive drug delivery systems based on clickable poly(L-glutamic acid)-grafted comb copolymers. Macromolecular Research, 2012, 20, 292-301.	2.4	29
105	Direct formation of cationic polypeptide vesicle as potential carrier for drug and gene. Materials Letters, 2012, 73, 17-20.	2.6	30
106	Synthesis and characterization of biodegradable pH-sensitive poly(acrylic acid) hydrogels crosslinked by 2-hydroxyethyl methacrylate modified poly(L-glutamic acid). Materials Letters, 2012, 77, 74-77.	2.6	29
107	BIODEGRADABLE THERMO-SENSITIVE HYDROGELS FOR CONTROLLED DELIVERY OF PARATHYROID HORMONE RELATED PEPTIDE. Acta Polymerica Sinica, 2012, 012, 778-783.	0.0	0
108	Versatile synthesis of temperature-sensitive polypeptides by click grafting of oligo(ethylene glycol). Polymer Chemistry, 2011, 2, 2627.	3.9	85

#	Article	IF	CITATIONS
109	One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polymer Chemistry, 2011, 2, 2857.	3.9	220
110	Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery. Journal of Materials Chemistry, 2011, 21, 11383.	6.7	138
111	Photo-induced in situ forming hydrogels based on collagen and a biocompatible macromolecular photoinitiator. Journal of Controlled Release, 2011, 152, e207-e208.	9.9	4
112	The crystallization behavior of poly(ethylene glycol)-poly(Îμ-caprolactone) diblock copolymers with asymmetric block compositions. Journal of Polymer Research, 2011, 18, 2161-2168.	2.4	38
113	Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology, 2011, 22, 494012.	2.6	60
114	SYNTHESIS AND SWELLING BEHAVIOR OF DEGRADABLE pH-SENSITIVE HYDROGELS COMPOSED OF POLY(L-GLUTAMIC ACID) AND POLY(ACRYLIC ACID). Acta Polymerica Sinica, 2011, 011, 883-888.	0.0	10
115	Biodegradable pH- and temperature-sensitive multiblock copolymer hydrogels based on poly(amino-ester urethane)s. Macromolecular Research, 2010, 18, 974-980.	2.4	24
116	pH- and temperature-sensitive PCL-grafted poly(β-amino ester)-poly(ethylene glycol)-poly(β-amino ester) copolymer hydrogels. Macromolecular Research, 2010, 18, 1096-1102.	2.4	14
117	In-Situ Gelling Stimuli-Sensitive PEG-Based Amphiphilic Copolymer Hydrogels. , 2010, , 123-146.		4
118	MPEG-b-poly(amino urethane) amphiphilic block copolymers and their pH-Dependent micellization behavior. Macromolecular Research, 2009, 17, 58-61.	2.4	2
119	Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer, 2009, 50, 4308-4316.	3.8	142
120	Novel temperature―and pHâ€responsive graft copolymers composed of poly(<scp>L</scp> â€glutamic acid) and poly(<i>N</i> â€isopropylacrylamide). Journal of Polymer Science Part A, 2008, 46, 4140-4150.	2.3	59
121	Novel pH―and Temperatureâ€Responsive Block Copolymers with Tunable pHâ€Responsive Range. Macromolecular Rapid Communications, 2008, 29, 490-497.	3.9	69
122	Synthesis of Novel Thermo―and pHâ€Responsive Poly(<scp>L</scp> â€lysine)â€Based Copolymer and its Micellization in Water. Macromolecular Rapid Communications, 2008, 29, 1810-1816.	3.9	53
123	In situ gelling aqueous solutions of pH- and temperature-sensitive poly(ester amino urethane)s. Polymer, 2008, 49, 4620-4625.	3.8	46
124	Study of temperature dependence of crystallisation transitions of a symmetric PEO-PCL diblock copolymer using simultaneous SAXS and WAXS measurements with synchrotron radiation. European Physical Journal E, 2008, 27, 357-364.	1.6	20
125	pH- and temperature-sensitive multiblock copolymer hydrogels composed of poly(ethylene glycol) and poly(amino urethane). Polymer, 2008, 49, 4968-4973.	3.8	83
126	In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. Journal of Controlled Release, 2008, 127, 189-207.	9.9	760

#	Article	IF	CITATIONS
127	Formation of a Unique Crystal Morphology for the Poly(ethylene glycol)â `Poly(Îμ-caprolactone) Diblock Copolymer. Biomacromolecules, 2006, 7, 252-258.	5.4	96

128 Composition Dependence of the Crystallization Behavior and Morphology of the Poly(ethylene) Tj ETQq0 0 0 rgBT $\frac{10}{5.4}$ Coverlock $\frac{10}{5.4}$ Tf 50 7C

129	Morphology and Structure of Single Crystals of Poly(ethylene glycol)â^'Poly(ε-caprolactone) Diblock Copolymers. Macromolecules, 2006, 39, 3717-3719.	4.8	70
130	Nano-composite of poly(-lactide) and surface grafted hydroxyapatite: Mechanical properties and biocompatibility. Biomaterials, 2005, 26, 6296-6304.	11.4	410
131	Crystallization and Ring-Banded Spherulite Morphology of Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 205, 2229-2234.	Tf 50 587 2.2	Td (oxide)- 56
132	Study of the Synthesis, Crystallization, and Morphology of Poly(ethylene glycol)â~'Poly(Îμ-caprolactone) Diblock Copolymers. Biomacromolecules, 2004, 5, 2042-2047.	5.4	131