Ana Maria Jimenez-Carvelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6731470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity – A review. Food Research International, 2019, 122, 25-39.	2.9	193
2	Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR and Raman spectroscopy. LWT - Food Science and Technology, 2017, 86, 174-184.	2.5	106
3	Comparative chemometric analysis of fluorescence and near infrared spectroscopies for authenticity confirmation and geographical origin of Argentinean extra virgin olive oils. Food Control, 2019, 96, 22-28.	2.8	47
4	Authentication of the geographical origin of extra-virgin olive oil of the Arbequina cultivar by chromatographic fingerprinting and chemometrics. Talanta, 2019, 203, 194-202.	2.9	46
5	PLS-DA vs sparse PLS-DA in food traceability. A case study: Authentication of avocado samples. Talanta, 2021, 224, 121904.	2.9	43
6	Chromatographic fingerprinting by comprehensive two-dimensional chromatography: Fundamentals and tools. TrAC - Trends in Analytical Chemistry, 2021, 134, 116133.	5.8	42
7	Comparison of different analytical classification scenarios: application for the geographical origin of edible palm oil by sterolic (NP) HPLC fingerprinting. Analytical Methods, 2015, 7, 4192-4201.	1.3	41
8	HPLC-UV and HPLC-CAD chromatographic data fusion for the authentication of the geographical origin of palm oil. Talanta, 2017, 170, 413-418.	2.9	38
9	One input-class and two input-class classifications for differentiating olive oil from other edible vegetable oils by use of the normal-phase liquid chromatography fingerprint of the methyl-transesterified fraction. Food Chemistry, 2017, 221, 1784-1791.	4.2	31
10	Data mining/machine learning methods in foodomics. Current Opinion in Food Science, 2021, 37, 76-82.	4.1	31
11	A new analytical method for quantification of olive and palm oil in blends with other vegetable edible oils based on the chromatographic fingerprints from the methyl-transesterified fraction. Talanta, 2017, 164, 540-547.	2.9	22
12	Classification of olive oils according to their cultivars based on second-order data using LC-DAD. Talanta, 2019, 195, 69-76.	2.9	22
13	ROC curves for the optimization of one-class model parameters. A case study: Authenticating extra virgin olive oil from a Catalan protected designation of origin. Talanta, 2021, 222, 121564.	2.9	22
14	Deep (offset) non-invasive Raman spectroscopy for the evaluation of food and beverages – A review. LWT - Food Science and Technology, 2021, 149, 111822.	2.5	20
15	Chromatographic Fingerprinting and Food Identity/Quality: Potentials and Challenges. Journal of Agricultural and Food Chemistry, 2021, 69, 14428-14434.	2.4	15
16	Fast-HPLC Fingerprinting to Discriminate Olive Oil from Other Edible Vegetable Oils by Multivariate Classification Methods. Journal of AOAC INTERNATIONAL, 2017, 100, 345-350.	0.7	14
17	Validation requirements of screening analytical methods based on scenario-specified applicability indicators. TrAC - Trends in Analytical Chemistry, 2020, 122, 115705.	5.8	11
18	Authentication of the Geographical Origin of Margarines and Fat-Spread Products from Liquid Chromatographic UV-Absorption Fingerprints and Chemometrics. Foods, 2019, 8, 588.	1.9	10

#	Article	IF	CITATIONS
19	Chromatographic Fingerprinting Enables Effective Discrimination and Identitation of High-Quality Italian Extra-Virgin Olive Oils. Journal of Agricultural and Food Chemistry, 2021, 69, 8874-8889.	2.4	10
20	Applications of multivariate data analysis in shelf life studies of edible vegetal oils – A review of the few past years. Food Packaging and Shelf Life, 2022, 31, 100790.	3.3	10
21	Authentication of the geographical origin and the botanical variety of avocados using liquid chromatography fingerprinting and deep learning methods. Chemometrics and Intelligent Laboratory Systems, 2020, 199, 103960.	1.8	8
22	Multivariate approach for the authentication of vanilla using infrared and Raman spectroscopy. Food Research International, 2021, 141, 110196.	2.9	8
23	Differentiation of avocados according to their botanical variety using liquid chromatographic fingerprinting and multivariate classification tree. Journal of the Science of Food and Agriculture, 2019, 99, 4932-4941.	1.7	7
24	A Sensor-Based Methodology to Differentiate Pure and Mixed White Tequilas Based on Fused Infrared Spectra and Multivariate Data Treatment. Chemosensors, 2021, 9, 47.	1.8	7
25	Standardization of chromatographic signals – Part I: Towards obtaining instrument-agnostic fingerprints in gas chromatography. Journal of Chromatography A, 2021, 1641, 461983.	1.8	7
26	Rapid and non-destructive spatially offset Raman spectroscopic analysis of packaged margarines and fat-spread products. Microchemical Journal, 2022, 178, 107378.	2.3	7
27	Sensory quality control of dry-cured ham: A comprehensive methodology for sensory panel qualification and method validation. Meat Science, 2019, 149, 149-155.	2.7	6
28	The occurrence: A meaningful parameter to be considered in the validation of multivariate classification-based screening methods – Application for authenticating virgin olive oil. Talanta, 2020, 208, 120467.	2.9	6
29	Applying an instrument-agnostizing methodology for the standardization of pesticide quantitation using different liquid chromatography-mass spectrometry platforms: A case study. Journal of Chromatography A, 2022, 1664, 462791.	1.8	6
30	A perfect tandem: chemometric methods and microfluidic colorimetric twin sensors on paper. Beyond the traditional analytical approach. Microchemical Journal, 2020, 157, 104930.	2.3	5
31	Nontargeted fingerprinting approaches. , 2021, , 163-193.		5
32	Standardization of chromatographic signals – Part II: Expanding instrument-agnostic fingerprints to reverse phase liquid chromatography. Journal of Chromatography A, 2021, 1641, 461973.	1.8	4
33	Multivariate thinking for optical microfluidic analytical devices – A tutorial review. Microchemical Journal, 2021, 164, 105959.	2.3	1
34	Chromatographic methods. , 2021, , 65-99.		0
35	Machine learning–based chemometric methods for quality and authentication of milk and dairy products. , 2022, , 261-280.		0
36	Instrument-agnostic multivariate models from normal phase liquid chromatographic fingerprinting. A case study: Authentication of olive oil. Food Control, 2022, 137, 108957.	2.8	0