Ting Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6731374/publications.pdf

Version: 2024-02-01

759233 794594 26 365 12 19 citations h-index g-index papers 26 26 26 510 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A cathode-supported solid oxide fuel cell prepared by the phase-inversion tape casting and impregnating method. International Journal of Hydrogen Energy, 2022, 47, 18810-18819.	7.1	18
2	Investigation of La0.6Sr0.4Co1-xNixO3- $\hat{\Gamma}$ (x=0, 0.2, 0.4, 0.6, 0.8) catalysts on solid oxide fuel cells anode for biogas dry reforming. International Journal of Hydrogen Energy, 2022, , .	7.1	2
3	Toward Durable Protonic Ceramic Cells: Hydration-Induced Chemical Expansion Correlates with Symmetry in the Y-Doped BaZrO ₃ –BaCeO ₃ Solid Solution. Journal of Physical Chemistry C, 2021, 125, 26216-26228.	3.1	12
4	Designing Optimal Perovskite Structure for High Ionic Conduction. Advanced Materials, 2020, 32, e1905178.	21.0	30
5	Simultaneous Electrical, Electrochemical, and Optical Relaxation Measurements of Oxygen Surface Exchange Coefficients: Sr(Ti,Fe)O _{3â°'d} Film Crystallization Case Study. ACS Applied Materials & Company: Interfaces, 2020, 12, 48614-48630.	8.0	12
6	Emergence of Rapid Oxygen Surface Exchange Kinetics during in Situ Crystallization of Mixed Conducting Thin Film Oxides. ACS Applied Materials & Interfaces, 2019, 11, 9102-9116.	8.0	12
7	Tailoring Mixed Ionic/Electronic Conductivity with Grain Boundaries: (La,Sr)(Ga,Mg)O3-X Case Study. ECS Meeting Abstracts, 2019, , .	0.0	O
8	A Comparison of Strontium Titanium Iron Oxide Perovskite Oxygen Surface Exchange Coefficients Obtained from Wafer Curvature vs. Optical Relaxation. ECS Meeting Abstracts, 2019, , .	0.0	0
9	(Invited) Measuring and Tailoring Chemo-Mechanical Coupling in Mixed Ionic and Electronic Conducting Oxides. ECS Meeting Abstracts, 2018, , .	0.0	O
10	The Impact of in Situ Crystallization on Oxygen Surface Exchange Kinetics of Mixed Conducting Thin Film Oxygen Electrodes. ECS Meeting Abstracts, 2018, , .	0.0	0
11	lonic and Electronic Transport in Nanocrystalline La0.9Sr0.1Ga0.9Mg0.1O3-Δ. ECS Meeting Abstracts, 2018, , .	0.0	O
12	Tailoring Chemical Expansion in Zirconate-Cerate Proton Conductors. ECS Meeting Abstracts, 2018, MA2018-01, 1934-1934.	0.0	0
13	Analysis of Electrochemomechanical Coupling in Non-Stoichiometric Oxide Thin Films (sub />. ECS Meeting Abstracts, 2018, MA2018-01, 1933-1933.	0.0	О
14	Impact of microstructure and crystallinity on surface exchange kinetics of strontium titanium iron oxide perovskite by $\langle i \rangle$ in situ $\langle i \rangle$ optical transmission relaxation approach. Journal of Materials Chemistry A, 2017, 5, 23006-23019.	10.3	15
15	Relating Microstructure to Surface Exchange Kinetics Using <i>in Situ </i> i>Optical Absorption Relaxation. ECS Transactions, 2017, 75, 23-31.	0.5	8
16	Sr 2 Fe 1+x Mo 1â^'x O 6â^'δ as anode material of cathode–supported solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41, 1104-1111.	7.1	29
17	Long-term stability of infiltrated La0.8Sr0.2CoO3â^', La0.58Sr0.4Co0.2Fe0.8O3â^' and SmBa0.5Sr0.5Co2.0O5+ cathodes for low temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40, 16532-16539.	7.1	20
18	High performance solid oxide electrolysis cell with impregnated electrodes. Electrochemistry Communications, 2015, 54, 23-27.	4.7	45

TING CHEN

#	Article	lF	CITATION
19	Long-term stability of metal-supported solid oxide fuel cells employing infiltrated electrodes. Journal of Power Sources, 2015, 295, 67-73.	7.8	18
20	Enhanced Performance and Stability of Metal–Supported Solid Oxide Fuel Cells with (Bi ₂ O ₃) _{0.3} –Ag Composite Cathode. Journal of the Electrochemical Society, 2015, 162, F9-F13.	2.9	9
21	High performance of intermediate temperature solid oxide electrolysis cells using Nd2NiO4+δ impregnated scandia stabilized zirconia oxygen electrode. Journal of Power Sources, 2015, 276, 1-6.	7.8	51
22	Performance of the nano-structured Cu–Ni (alloy) -CeO2 anode for solid oxide fuel cells. Journal of Power Sources, 2015, 274, 730-735.	7.8	25
23	Fabrication of composite cathode by a new process for anode-supported tubular solid oxide fuel cells. Electrochimica Acta, 2014, 149, 212-217.	5.2	3
24	Impregnated Nd2NiO4+- scandia stabilized zirconia composite cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2014, 269, 812-817.	7.8	16
25	Infiltrated SmBa0.5Sr0.5Co2O5+δ cathodes for metal–supported solid oxide fuel cells. Electrochimica Acta, 2014, 149, 231-236.	5.2	18
26	Evaluation of Ni and Ni–Ce0.8Sm0.2O2â^î^(SDC) impregnated 430L anodes for metal-supported solid oxide fuel cells. Journal of Power Sources, 2014, 267, 117-122.	7.8	22