
G M Holsclaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6730889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Emirates Mars Mission. Space Science Reviews, 2022, 218, 4.	8.1	29
2	Laboratory Study of the Cameron Bands, the First Negative Bands, and Fourth Positive Bands in the Middle Ultraviolet 180–280Ânm by Electron Impact Upon CO. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	7
3	Martian water loss to space enhanced by regional dust storms. Nature Astronomy, 2021, 5, 1036-1042.	10.1	40
4	Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes. Space Science Reviews, 2021, 217, .	8.1	23
5	The Emirates Mars Ultraviolet Spectrometer (EMUS) for the EMM Mission. Space Science Reviews, 2021, 217, 1.	8.1	17
6	The UV Spectrum of the Lymanâ€Birgeâ€Hopfield Band System of N ₂ Induced by Cascading from Electron Impact. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027546.	2.4	13
7	Long-term Variations of Venus's 365 nm Albedo Observed by Venus Express, Akatsuki, MESSENGER, and the Hubble Space Telescope. Astronomical Journal, 2019, 158, 126.	4.7	30
8	UV Study of the Fourth Positive Band System of CO and O <scp>i</scp> 135.6Ânm From Electron Impact on CO and CO ₂ . Journal of Geophysical Research: Space Physics, 2019, 124, 2954-2977.	2.4	12
9	Venus Upper Clouds and the UV Absorber From MESSENGER/MASCS Observations. Journal of Geophysical Research E: Planets, 2018, 123, 145-162.	3.6	41
10	Mars H Escape Rates Derived From MAVEN/IUVS Lyman Alpha Brightness Measurements and Their Dependence on Model Assumptions. Journal of Geophysical Research E: Planets, 2018, 123, 2192-2210.	3.6	42
11	Global Aurora on Mars During the September 2017 Space Weather Event. Geophysical Research Letters, 2018, 45, 7391-7398.	4.0	44
12	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
13	Discovery of a proton aurora at Mars. Nature Astronomy, 2018, 2, 802-807.	10.1	50
14	Significant Space Weather Impact on the Escape of Hydrogen From Mars. Geophysical Research Letters, 2018, 45, 8844-8852.	4.0	29
15	Martian Thermospheric Response to an X8.2 Solar Flare on 10 September 2017 as Seen by MAVEN/IUVS. Geophysical Research Letters, 2018, 45, 7312-7319.	4.0	24
16	Variability of D and H in the Martian upper atmosphere observed with the MAVEN IUVS echelle channel. Journal of Geophysical Research: Space Physics, 2017, 122, 2336-2344.	2.4	64
17	Martian mesospheric cloud observations by IUVS on MAVEN: Thermal tides coupled to the upper atmosphere. Geophysical Research Letters, 2017, 44, 4709-4715.	4.0	23
18	Detection of a persistent meteoric metal layer in the Martian atmosphere. Nature Geoscience, 2017, 10, 401-404.	12.9	52

G M HOLSCLAW

#	Article	IF	CITATIONS
19	Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMDâ€MGCM predictions. Journal of Geophysical Research: Space Physics, 2017, 122, 5782-5797.	2.4	36
20	IUVS echelleâ€mode observations of interplanetary hydrogen: Standard for calibration and reference for cavity variations between Earth and Mars during MAVEN cruise. Journal of Geophysical Research: Space Physics, 2017, 122, 2089-2105.	2.4	16
21	Electron impact study of the 100ÂeV emission cross section and lifetime of the Lymanâ€Birgeâ€Hopfield band system of N ₂ : Direct excitation and cascade. Journal of Geophysical Research: Space Physics, 2017, 122, 6776-6790.	2.4	7
22	Cassini UVIS observations of Titan ultraviolet airglow intensity dependence with solar zenith angle. Geophysical Research Letters, 2017, 44, 88-96.	4.0	20
23	Microchannel plate life testing for UV spectroscopy instruments. , 2017, , .		1
24	Ultraviolet observations of the hydrogen coma of comet C/2013 A1 (Siding Spring) by MAVEN/IUVS. Geophysical Research Letters, 2015, 42, 8803-8809.	4.0	11
25	MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars. Geophysical Research Letters, 2015, 42, 4755-4761.	4.0	56
26	Nonmigrating tides in the Martian atmosphere as observed by MAVEN IUVS. Geophysical Research Letters, 2015, 42, 9057-9063.	4.0	43
27	Retrieval of CO ₂ and N ₂ in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9040-9049.	4.0	43
28	Study of the Martian cold oxygen corona from the O I 130.4 nm by IUVS/MAVEN. Geophysical Research Letters, 2015, 42, 9031-9039.	4.0	21
29	The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 2015, 42, 9023-9030.	4.0	95
30	Threeâ€dimensional structure in the Mars H corona revealed by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9001-9008.	4.0	67
31	MAVEN IUVS observation of the hot oxygen corona at Mars. Geophysical Research Letters, 2015, 42, 9009-9014.	4.0	77
32	New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophysical Research Letters, 2015, 42, 9050-9056.	4.0	41
33	Probing the Martian atmosphere with MAVEN/IUVS stellar occultations. Geophysical Research Letters, 2015, 42, 9064-9070.	4.0	42
34	The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN Mission. Space Science Reviews, 2015, 195, 75-124.	8.1	139
35	The Mars Atmosphere and Volatile Evolution (MAVEN) Mission. Space Science Reviews, 2015, 195, 3-48.	8.1	563
36	MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science, 2015, 350, aad0210.	12.6	166

G M HOLSCLAW

#	Article	IF	CITATIONS
37	Discovery of diffuse aurora on Mars. Science, 2015, 350, aad0313.	12.6	98
38	Early MAVEN Deep Dip campaign reveals thermosphere and ionosphere variability. Science, 2015, 350, aad0459.	12.6	90
39	Visible to near-infrared hyperspectral measurements of mercury: Challenges for deciphering surface mineralogy. , 2014, , .		2
40	The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 2014, 228, 364-374.	2.5	82
41	Hydrogen atoms in the inner heliosphere: SWAN OHO and MASCSâ€MESSENGER observations. Journal of Geophysical Research: Space Physics, 2014, 119, 8017-8029.	2.4	6
42	Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. Journal of Geophysical Research E: Planets, 2014, 119, 635-658.	3.6	79
43	SOLAR OCCULTATION BY TITAN MEASURED BY <i>CASSINI</i> /UVIS. Astrophysical Journal Letters, 2013, 766, L16.	8.3	9
44	Lyman-Î \pm Models for LRO LAMP from MESSENGER MASCS and SOHO SWAN Data. , 2013, , 163-175.		6
45	Cassini UVIS observations of Titan nightglow spectra. Journal of Geophysical Research, 2012, 117, .	3.3	28
46	The production of Titan's ultraviolet nitrogen airglow. Journal of Geophysical Research, 2011, 116, .	3.3	49
47	The auroral footprint of Enceladus on Saturn. Nature, 2011, 472, 331-333.	27.8	82
48	The ultraviolet reflectance of Enceladus: Implications for surface composition. Icarus, 2010, 206, 608-617.	2.5	52
49	Whole-disk spectrophotometric properties of Mercury: Synthesis of MESSENGER and ground-based observations. Icarus, 2010, 209, 101-124.	2.5	35
50	A comparison of the ultraviolet to near-infrared spectral properties of Mercury and the Moon as observed by MESSENGER. Icarus, 2010, 209, 179-194.	2.5	26
51	Venus Spectrophotometry During the MESSENGER Mission Fly-By. Thirty Years of Astronomical Discovery With UKIRT, 2010, , 455-455.	0.3	Ο
52	Characteristics of Saturn's polar atmosphere and auroral electrons derived from HST/STIS, FUSE and Cassini/UVIS spectra. Icarus, 2009, 200, 176-187.	2.5	51
53	Multispectral images of Mercury from the first MESSENGER flyby: Analysis of global and regional color trends. Earth and Planetary Science Letters, 2009, 285, 272-282.	4.4	88
54	In-flight performance of MESSENGER's Mercury Dual Imaging System. Proceedings of SPIE, 2009, , .	0.8	22

G M HOLSCLAW

#	Article	IF	CITATIONS
55	Reflectance and Color Variations on Mercury: Regolith Processes and Compositional Heterogeneity. Science, 2008, 321, 66-69.	12.6	167
56	Spectroscopic Observations of Mercury's Surface Reflectance During MESSENGER's First Mercury Flyby. Science, 2008, 321, 62-65.	12.6	94
57	Absolute ultraviolet irradiance of the moon from SORCE SOLSTICE. , 2007, , .		2
58	Titan airglow spectra from Cassini Ultraviolet Imaging Spectrograph (UVIS): EUV analysis. Geophysical Research Letters, 2007, 34, .	4.0	69
59	Radiation-induced changes in the solid state detector performance for the Mercury atmospheric and surface composition spectrometer (MASCS). , 2003, , .		0