Sandra Rieger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6730518/publications.pdf

Version: 2024-02-01

567281 526287 1,129 30 15 27 citations h-index g-index papers 34 34 34 1819 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Vitamin D Modulation of Mitochondrial Oxidative Metabolism and <scp>mTOR</scp> Enforces Stress Adaptations and Anticancer Responses. JBMR Plus, 2022, 6, e10572.	2.7	13
2	GDNF neurotrophic factor signalling determines the fate of dermal fibroblasts in woundâ€induced hair neogenesis and skin regeneration. Experimental Dermatology, 2022, 31, 577-581.	2.9	3
3	Reawakening GDNF's regenerative past in mice and humans. Regenerative Therapy, 2022, 20, 78-85.	3.0	2
4	Longitudinal RNA Sequencing of Skin and DRG Neurons in Mice with Paclitaxel-Induced Peripheral Neuropathy. Data, 2022, 7, 72.	2.3	2
5	Analyzing chemotherapy-induced peripheral neuropathy in vivo using non-mammalian animal models. Experimental Neurology, 2020, 323, 113090.	4.1	8
6	Pathogenesis of paclitaxel-induced peripheral neuropathy: A current review of in vitro and in vivo findings using rodent and human model systems. Experimental Neurology, 2020, 324, 113121.	4.1	118
7	Paclitaxel-induced peripheral neuropathy is caused by epidermal ROS and mitochondrial damage through conserved MMP-13 activation. Scientific Reports, 2020, 10, 3970.	3.3	31
8	Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity. Journal of Diabetes and Its Complications, 2018, 32, 249-257.	2.3	28
9	Vitamin D and MicroRNAs. , 2018, , 245-267.		O
10	IKKα regulates human keratinocyte migration by surveillance of the redox environment. Journal of Cell Science, 2017, 130, 975-988.	2.0	13
11	Reactive oxygen species and neuroepithelial interactions during wound healing. , 2017, , 23-38.		O
12	DNA Damage-Inducible Transcript 4 Is an Innate Surveillant of Hair Follicular Stress in Vitamin D Receptor Knockout Mice and a Regulator of Wound Re-Epithelialization. International Journal of Molecular Sciences, 2016, 17, 1984.	4.1	18
13	Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2189-98.	7.1	64
14	Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing. Scientific Reports, 2016, 6, 20328.	3.3	51
15	Comparative biology of tissue repair, regeneration and aging. Npj Regenerative Medicine, 2016, 1, .	5.2	12
16	Capturing Tissue Repair in Zebrafish Larvae with Time-lapse Brightfield Stereomicroscopy. Journal of Visualized Experiments, 2015, , .	0.3	10
17	The role of nuclear hormone receptors in cutaneous wound repair. Cell Biochemistry and Function, 2015, 33, 1-13.	2.9	70
18	Cloning of a functional 25â€hydroxyvitamin Dâ€1αâ€hydroxylase in zebrafish (<i>Danio rerio</i>). Cell Biochemistry and Function, 2014, 32, 675-682.	2.9	5

#	Article	IF	CITATIONS
19	Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts. Journal of Bone and Mineral Research, 2013, 28, 1478-1488.	2.8	72
20	Coordinate development of skin cells and cutaneous sensory axons in zebrafish. Journal of Comparative Neurology, 2012, 520, 816-831.	1.6	61
21	Timeâ€lapse imaging of neural development: Zebrafish lead the way into the fourth dimension. Genesis, 2011, 49, 534-545.	1.6	11
22	Hydrogen Peroxide Promotes Injury-Induced Peripheral Sensory Axon Regeneration in the Zebrafish Skin. PLoS Biology, 2011, 9, e1000621.	5.6	146
23	Regulation of heart rate in zebrafish embryos. FASEB Journal, 2010, 24, 988.8.	0.5	0
24	Cadherin-2 Controls Directional Chain Migration of Cerebellar Granule Neurons. PLoS Biology, 2009, 7, e1000240.	5.6	78
25	Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. Journal of Visualized Experiments, 2009, , .	0.3	51
26	Polysialyltransferase expression is linked to neuronal migration in the developing and adult zebrafish. Developmental Dynamics, 2008, 237, 276-285.	1.8	28
27	The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments. Developmental Biology, 2008, 313, 167-180.	2.0	77
28	Preparation of Zebrafish Embryos for Transmission Electron Microscopy. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4772-pdb.prot4772.	0.3	4
29	Identification and validation of novelERBB2(HER2,NEU) targets including genes involved in angiogenesis. International Journal of Cancer, 2005, 114, 590-597.	5.1	53
30	Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Developmental Dynamics, 2005, 234, 670-681.	1.8	100