Timothy Sutton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6730485/publications.pdf

Version: 2024-02-01

257357 289141 2,726 41 24 h-index citations papers

40 g-index 41 41 41 3101 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Boron-Toxicity Tolerance in Barley Arising from Efflux Transporter Amplification. Science, 2007, 318, 1446-1449.	6.0	422
2	Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51, 857-864.	9.4	219
3	Genotyping-by-sequencing based intra-specific genetic map refines a â€~â€~QTL-hotspot―region for drought tolerance in chickpea. Molecular Genetics and Genomics, 2015, 290, 559-571.	1.0	180
4	QTLâ€seq for rapid identification of candidate genes for 100â€seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnology Journal, 2016, 14, 2110-2119.	4.1	177
5	Boron Toxicity Tolerance in Barley through Reduced Expression of the Multifunctional Aquaporin HvNIP2;1 Â. Plant Physiology, 2010, 153, 1706-1715.	2.3	159
6	Prioritization of candidate genes in "QTL-hotspot―region for drought tolerance in chickpea (Cicer) Tj ETQqC)	Oygrlock 10
7	Genome-Enabled Prediction Models for Yield Related Traits in Chickpea. Frontiers in Plant Science, 2016, 7, 1666.	1.7	127
8	Investigating Drought Tolerance in Chickpea Using Genome-Wide Association Mapping and Genomic Selection Based on Whole-Genome Resequencing Data. Frontiers in Plant Science, 2018, 9, 190.	1.7	111
9	Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature, 2014, 514, 88-91.	13.7	106
10	Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1000, 1-13.	1.2	96
11	Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Scientific Reports, 2017, 7, 1300.	1.6	94
12	Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics, 2006, 7, 267.	1.2	82
13	High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theoretical and Applied Genetics, 2015, 128, 1039-1047.	1.8	76
14	Bread Wheat With High Salinity and Sodicity Tolerance. Frontiers in Plant Science, 2019, 10, 1280.	1.7	74
15	ThePh2pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. Plant Journal, 2003, 36, 443-456.	2.8	73
16	Comparative transcriptomics in the Triticeae. BMC Genomics, 2009, 10, 285.	1.2	62
17	Boron toxicity tolerance in wheat and barley: Australian perspectives. Breeding Science, 2010, 60, 297-304.	0.9	60
18	Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theoretical and Applied Genetics, 2007, 115, 451-461.	1.8	53

#	Article	IF	CITATIONS
19	Genome Analysis Identified Novel Candidate Genes for Ascochyta Blight Resistance in Chickpea Using Whole Genome Re-sequencing Data. Frontiers in Plant Science, 2017, 8, 359.	1.7	53
20	Phenotypic plasticity and its genetic regulation for yield, nitrogen fixation and \hat{l} (sup>13C in chickpea crops under varying water regimes. Journal of Experimental Botany, 2016, 67, 4339-4351.	2.4	50
21	Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nature Communications, 2021, 12, 803.	5.8	49
22	A QTL on the Ca7 chromosome of chickpea affects resistance to the root-lesion nematode Pratylenchus thornei. Molecular Breeding, 2021, 41, 1.	1.0	32
23	A Barley Efflux Transporter Operates in a Na ⁺ -Dependent Manner, as Revealed by a Multidisciplinary Platform. Plant Cell, 2016, 28, 202-218.	3.1	29
24	The Bo1-specific PCR marker AWW5L7 is predictive of boron tolerance status in a range of exotic durum and bread wheats. Genome, 2008, 51, 963-971.	0.9	26
25	Germanium as a tool to dissect boron toxicity effects in barley and wheat. Functional Plant Biology, 2013, 40, 618.	1.1	26
26	Quantifying the Onset and Progression of Plant Senescence by Color Image Analysis for High Throughput Applications. PLoS ONE, 2016, 11, e0157102.	1.1	26
27	Mapping resistance to Phytophthora root rot identifies independent loci from cultivated (Cicer) Tj ETQq1 1 0.7843 2019, 132, 1017-1033.	314 rgBT / 1.8	Overlock 10 24
28	Novel Salinity Tolerance Loci in Chickpea Identified in Glasshouse and Field Environments. Frontiers in Plant Science, 2021, 12, 667910.	1.7	20
29	Diversity in boron toxicity tolerance of Australian barley (Hordeum vulgare L.) genotypes. BMC Plant Biology, 2015, 15, 231.	1.6	15
30	Genes mapping to boron tolerance QTL in barley identified by suppression subtractive hybridization. Plant, Cell and Environment, 2010, 33, 188-198.	2.8	11
31	A hydroponics based high throughput screening system for Phytophthora root rot resistance in chickpea (Cicer arietinum L.). Plant Methods, 2019, 15, 82.	1.9	11
32	WM5: Isolation and characterisation of a gene expressed during early meiosis and shoot meristem development in wheat. Functional Plant Biology, 2005, 32, 249.	1.1	9
33	Identification of transposons, retroelements, and a gene family predominantly expressed in floral tissues in chromosome 3DS of the hexaploid wheat progenitor Aegilops tauschii. Functional and Integrative Genomics, 2006, 7, 37-52.	1.4	9
34	Genomic prediction of preliminary yield trials in chickpea: Effect of functional annotation of SNPs and environment. Plant Genome, 2022, 15, e20166.	1.6	7
35	Cause of Death: Phytophthora or Flood? Effects of Waterlogging on Phytophthora medicaginis and Resistance of Chickpea (Cicer arietinum). Agronomy, 2022, 12, 89.	1.3	7
36	Fine Mapping of a Vigor QTL in Chickpea (Cicer arietinum L.) Reveals a Potential Role for Ca4_TIFY4B in Regulating Leaf and Seed Size. Frontiers in Plant Science, 2022, 13, 829566.	1.7	6

TIMOTHY SUTTON

#	Article	IF	CITATION
37	The genetics of vigour-related traits in chickpea (Cicer arietinum L.): insights from genomic data. Theoretical and Applied Genetics, 2021, 135, 107.	1.8	4
38	Evidence for the Application of Emerging Technologies to Accelerate Crop Improvement – A Collaborative Pipeline to Introgress Herbicide Tolerance Into Chickpea. Frontiers in Plant Science, 2021, 12, 779122.	1.7	4
39	Phenotypic and molecular characterisation of novel <scp><i>Vicia faba</i></scp> germplasm with tolerance to acetohydroxyacid synthaseâ€inhibiting herbicides (AHAS) developed through mutagenesis techniques. Pest Management Science, 2019, 75, 2698-2705.	1.7	3
40	Genetic analysis of boron tolerance in burr medic (Medicago polymorpha L.). Crop and Pasture Science, 2021, 72, 634.	0.7	3
41	Boron toxicity and deficiency in Triticeae: Update on tolerance mechanisms and transporters. New Biotechnology, 2012, 29, S137.	2.4	O