Sylvia GlaÃ&r

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6730451/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurgical Focus, 2019, 47, E15.	2.3	60
2	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): Phase I: Segmentation. Cardiovascular Engineering and Technology, 2018, 9, 565-581.	1.6	59
3	Fluid-Structure Simulations of a Ruptured Intracranial Aneurysm: Constant versus Patient-Specific Wall Thickness. Computational and Mathematical Methods in Medicine, 2016, 2016, 1-8.	1.3	39
4	Multimodal validation of focal enhancement in intracranial aneurysms as a surrogate marker for aneurysm instability. Neuroradiology, 2020, 62, 1627-1635.	2.2	35
5	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH)—phase II: rupture risk assessment. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1795-1804.	2.8	29
6	Semiautomatic neck curve reconstruction for intracranial aneurysm rupture risk assessment based on morphological parameters. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 1781-1793.	2.8	22
7	Flow-splitting-based computation of outlet boundary conditions for improved cerebrovascular simulation in multiple intracranial aneurysms. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 1805-1813.	2.8	18
8	Experimental investigation of intravascular OCT for imaging of intracranial aneurysms. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 231-241.	2.8	17
9	Rupture risk assessment for multiple intracranial aneurysms: why there is no need for dozens of clinical, morphological and hemodynamic parameters. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642096615.	3.5	16
10	Can we distinguish between benign and malignant breast tumors in DCE-MRI by studying a tumor's most suspect region only?. , 2013, , .		15
11	Rupture Status Classification of Intracranial Aneurysms Using Morphological Parameters. , 2018, , .		12
12	Aneurysm Wall Enhancement Is Associated With Decreased Intrasaccular IL-10 and Morphological Features of Instability. Neurosurgery, 2021, 89, 664-671.	1.1	12
13	Hemodynamic Data Assimilation in aÂSubject-specific Circle of Willis Geometry. Clinical Neuroradiology, 2021, 31, 643-651.	1.9	11
14	Multiple Aneurysms AnaTomy CHallenge 2018 (MATCH): uncertainty quantification of geometric rupture risk parameters. BioMedical Engineering OnLine, 2019, 18, 35.	2.7	9
15	Objective quantification of the vocal fold vascular pattern: comparison of narrow band imaging and white light endoscopy. European Archives of Oto-Rhino-Laryngology, 2016, 273, 2599-2605.	1.6	6
16	Can Endovascular Treatment of Fusiform Intracranial Aneurysms Restore the Healthy Hemodynamic Environment?–A Virtual Pilot Study. Frontiers in Neurology, 2021, 12, 771694.	2.4	4
17	Combining visual analytics and case-based reasoning for rupture risk assessment of intracranial aneurysms. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1525-1535.	2.8	3
18	Intravascular optical coherence tomography (OCT) as an additional tool for the assessment of stent structures. Current Directions in Biomedical Engineering, 2015, 1, 257-260.	0.4	2

Sylvia Glaßer

#	Article	IF	CITATIONS
19	From imaging to hemodynamics – how reconstruction kernels influence the blood flow predictions in intracranial aneurysms. Current Directions in Biomedical Engineering, 2016, 2, 679-683.	0.4	2
20	VICTORIA: VIrtual neck Curve and True Ostium Reconstruction of Intracranial Aneurysms. Cardiovascular Engineering and Technology, 2021, 12, 454-465.	1.6	2
21	Definition and extraction of 2D shape indices of intracranial aneurysm necks for rupture risk assessment. International Journal of Computer Assisted Radiology and Surgery, 2021, 16, 1977-1984.	2.8	2