
Sharmila Chattopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6730412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interplay between glutathione and mitogen-activated protein kinase 3 via transcription factor WRKY40 under combined osmotic and cold stress in Arabidopsis. Journal of Plant Physiology, 2022, 271, 153664.	3.5	10
2	Micro-RNA based gene regulation: A potential way for crop improvements. Plant Gene, 2021, 27, 100312.	2.3	12
3	Deciphering the involvement of glutathione in phytohormone signaling pathways to mitigate stress in planta. Nucleus (India), 2020, 63, 25-33.	2.2	3
4	AAL-toxin induced stress in Arabidopsis thaliana is alleviated through CSH-mediated salicylic acid and ethylene pathways. Plant Cell, Tissue and Organ Culture, 2020, 141, 299-314.	2.3	4
5	Glutathione modulates the expression of heat shock proteins via the transcription factors BZIP10 and MYB21 in Arabidopsis. Journal of Experimental Botany, 2018, 69, 3729-3743.	4.8	32
6	Membrane proteome profiling of <i>Mentha arvensis</i> leaves in response to <i>Alternaria alternata</i> infection identifies crucial candidates for defense response. Plant Signaling and Behavior, 2018, 13, e1178423.	2.4	5
7	Using community health workers to refer pregnant women and young children to health care facilities in rural West Bengal, India: A prospective cohort study. PLoS ONE, 2018, 13, e0199607.	2.5	5
8	Transcriptomic changes under stress conditions with special reference to glutathione contents. Nucleus (India), 2018, 61, 241-252.	2.2	3
9	Methyl Jasmonate Regulates Podophyllotoxin Accumulation in Podophyllum hexandrum by Altering the ROS-Responsive Podophyllotoxin Pathway Gene Expression Additionally through the Down Regulation of Few Interfering miRNAs. Frontiers in Plant Science, 2017, 08, 164.	3.6	21
10	Sequencing, De novo Assembly, Functional Annotation and Analysis of Phyllanthus amarus Leaf Transcriptome Using the Illumina Platform. Frontiers in Plant Science, 2016, 6, 1199.	3.6	25
11	Transcriptome-wide identification and characterization of CAD isoforms specific for podophyllotoxin biosynthesis from Podophyllum hexandrum. Plant Molecular Biology, 2016, 92, 1-23.	3.9	18
12	Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. Scientific Reports, 2016, 6, 36867.	3.3	32
13	Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene, 2016, 6, 82-89.	2.3	61
14	Interplay Among Glutathione, Salicylic Acid, and Ethylene to Combat Environmental Stress. , 2016, , 145-161.		1
15	Exploitation of a new Schiff-base ligand for boric acid fluorescent sensing in aqueous medium with bio-imaging studies in a living plant system. RSC Advances, 2015, 5, 51875-51882.	3.6	6
16	Glutathione regulates ACC synthase transcription via WRKY33 and ACC oxidase by modulating mRNA stability to induce ethylene synthesis during stress. Plant Physiology, 2015, 169, pp.01543.2015.	4.8	95
17	Changes in the proteome of pad2-1, a glutathione depleted Arabidopsis mutant, during Pseudomonas syringae infection. Journal of Proteomics, 2015, 126, 82-93.	2.4	9
18	Integrated transcriptomic and proteomic analysis of Arabidopsis thaliana exposed to glutathione unravels its role in plant defense. Plant Cell, Tissue and Organ Culture, 2015, 120, 975-988.	2.3	20

SHARMILA CHATTOPADHYAY

#	Article	IF	CITATIONS
19	Transcriptomic Profiling of Arabidopsis thaliana Mutant pad2.1 in Response to Combined Cold and Osmotic Stress. PLoS ONE, 2015, 10, e0122690.	2.5	25
20	Proteomic profiling of γ- <i>ECS</i> overexpressed transgenic <i>Nicotiana</i> in response to drought stress. Plant Signaling and Behavior, 2014, 9, e29246.	2.4	12
21	Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress. Journal of Plant Physiology, 2014, 171, 940-950.	3.5	54
22	Establishment of cDNA Library and EST Analysis from Leaves of Phyllanthus amarus. International Journal of Biochemistry Research & Review, 2014, 4, 1-15.	0.1	2
23	Leaf proteome profiling of transgenic mint infected with Alternaria alternata. Journal of Proteomics, 2013, 93, 117-132.	2.4	14
24	Changes in leaf proteome profile of Arabidopsis thaliana in response to salicylic acid. Journal of Biosciences, 2013, 38, 317-328.	1.1	18
25	De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics, 2013, 14, 748.	2.8	43
26	The lignan niranthin poisons <i>Leishmania donovani</i> topoisomerase IB and favours a Th1 immune response in mice. EMBO Molecular Medicine, 2012, 4, 1126-1143.	6.9	55
27	Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Science, 2012, 10, 34.	1.7	46
28	Glutathione as a signaling molecule - another challenge to pathogens. Plant Signaling and Behavior, 2011, 6, 783-788.	2.4	65
29	Nicotiana tabacum overexpressing Î ³ -ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta, 2011, 233, 895-910.	3.2	68
30	Changes in the leaf proteome profile of Mentha arvensis in response to Alternaria alternata infection. Journal of Proteomics, 2011, 74, 327-336.	2.4	47
31	Glutathione signaling acts through NPR1-dependent SA-mediated pathway to mitigate biotic stress. Plant Signaling and Behavior, 2011, 6, 607-609.	2.4	25
32	Effect of over-expression of Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (LuPLR) gene in transgenic Phyllanthus amarus. Plant Cell, Tissue and Organ Culture, 2010, 103, 315-323.	2.3	11
33	Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine. BMC Complementary and Alternative Medicine, 2010, 10, 77.	3.7	110
34	Agrobacterium-mediated genetic transformation of mint with E.Âcoli glutathione synthetase gene. Plant Cell, Tissue and Organ Culture, 2009, 96, 117-126.	2.3	14
35	Genetic transformation of a hepatoprotective plant, Phyllanthus amarus. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 57-64.	2.1	6
36	Stimulation of menthol production in Mentha piperita cell culture. In Vitro Cellular and Developmental Biology - Plant, 2008, 44, 518-524.	2.1	30

#	Article	IF	CITATIONS
37	In vivo Efficacy of Calceolarioside A against Experimental Visceral Leishmaniasis. Planta Medica, 2008, 74, 503-508.	1.3	12
38	Oxidative DNA Damage Preventive Activity and Antioxidant Potential of <i>Stevia rebaudiana</i> (Bertoni) Bertoni, a Natural Sweetener. Journal of Agricultural and Food Chemistry, 2007, 55, 10962-10967.	5.2	140
39	DNA damage protecting activity and antioxidant potential of pudina extract. Food Chemistry, 2007, 100, 1377-1384.	8.2	114
40	Do \hat{I}^2 -tubulin pseudogenes really matter?. Lancet Oncology, The, 2004, 5, 271-272.	10.7	5
41	Recycling of the Insulin-sensitive Glucose Transporter GLUT4. Journal of Biological Chemistry, 2001, 276, 3371-3383.	3.4	36
42	Rapid micropropagation for Mucuna pruriens f. pruriens L Plant Cell Reports, 1995, 15, 271-273.	5.6	14
43	Production of L-DOPA from cell suspension culture of Mucuna pruriens f. pruriens. Plant Cell Reports, 1994, 13, 519-22.	5.6	37
44	Production of I-DOPA byAspergillus terreus. FEMS Microbiology Letters, 1990, 72, 195-199.	1.8	37
45	Deep sequencing unravels methyl jasmonate responsive novel miRNAs in Podophyllum hexandrum. Journal of Plant Biochemistry and Biotechnology, 0, , 1.	1.7	4