Javad Mola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6729635/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-cube-on-cube orientation relationship between M23C6 and austenite in an austenitic stainless steel. Scripta Materialia, 2022, 213, 114597.	2.6	11
2	Temperature dependence of tensile deformation behavior and strain hardening of lean duplex stainless steels. Journal of Materials Research and Technology, 2022, 20, 330-342.	2.6	6
3	Fatigue Improvement of AlSi10Mg Fabricated by Laser-Based Powder Bed Fusion through Heat Treatment. Metals, 2021, 11, 683.	1.0	14
4	On the effect of Mn-content on the strength-ductility balance in Ni-free high N transformation induced plasticity steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141260.	2.6	10
5	Dynamic strain aging mechanisms in a metastable austenitic stainless steel. Acta Materialia, 2021, 212, 116888.	3.8	48
6	Correlation between mechanical stability and hardness of austenite in martensite/austenite mixtures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141687.	2.6	9
7	Influence of Carbon on the Microstructure Evolution and Hardness of Fe–13Cr–xC (x = 0–0.7 wt.%) Stainless Steel. Materials, 2021, 14, 5063.	1.3	1
8	Effect of Deformation during Austempering on Bainite Transformation and Retained Austenite in a Medium arbon Bainitic Steel. Steel Research International, 2020, 91, 1900353.	1.0	1
9	Focused ion beam-induced displacive phase transformation from austenite to martensite during fabrication of quenched and partitioned steel micro-pillar. Journal of Alloys and Compounds, 2020, 812, 152061.	2.8	13
10	Impact of Al addition on deformation behavior of Fe–Cr–Ni–Mn–C austenitic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140084.	2.6	11
11	Neutron diffraction analysis of stress and strain partitioning in a two-phase microstructure with parallel-aligned phases. Scientific Reports, 2020, 10, 13536.	1.6	3
12	Design of High Alloy Austenitic CrMnNi Steels Exhibiting TRIP/TWIP Properties. Springer Series in Materials Science, 2020, , 41-75.	0.4	0
13	Thermodynamic-Mechanical Modeling of Metastable High Alloy Austenitic CrMnNi Steels. Springer Series in Materials Science, 2020, , 651-678.	0.4	1
14	Damage characterization of heat-treated titanium bio-alloy (Ti–6Al–4V) based on micromechanical modeling. Surface Topography: Metrology and Properties, 2020, 8, 045016.	0.9	3
15	Tempering Reactions and Elemental Redistribution During Tempering of Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3663-3673.	1.1	12
16	Thermal Analysis of the Formation and Dissolution of Crâ€Rich Carbides in Alâ€Alloyed Stainless Steels. Advanced Engineering Materials, 2019, 21, 1800658.	1.6	8
17	Constituent-specific properties in quenching and partitioning (Q&P) processed steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 740-741, 439-444.	2.6	19
18	Ultra High Strength Stainless Steels Obtained by Quenchingâ€Deformationâ€Partitioning (QDP) Processing. Advanced Engineering Materials, 2019, 21, 1800571.	1.6	10

Javad Mola

#	Article	IF	CITATIONS
19	On the Critical Driving Force for Deformationâ€Induced α′â€Martensite Formation in Austenitic Cr–Mn–N Steels. Advanced Engineering Materials, 2019, 21, 1800676.	1.6	16
20	Nanoscale partitioning of Mn between austenite and martensite revealed by Curie temperature variations. Philosophical Magazine Letters, 2018, 98, 55-63.	0.5	3
21	Tensile Deformation Behavior of Medium Manganese Steels with High Carbon Concentrations and Austenitic Microstructures. Metals, 2018, 8, 902.	1.0	2
22	Cementite evolution in medium manganese twinning-induced plasticity steels. Materialia, 2018, 2, 138-147.	1.3	7
23	Austenitic Nickel- and Manganese-Free Fe-15Cr-1Mo-0.4N-0.3C Steel: Tensile Behavior and Deformation-Induced Processes between 298ÂK and 503ÂK (25°C and 230°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1033-1052.	1.1	17
24	Tensile elongation of lean-alloy austenitic stainless steels: Transformation-induced plasticity versus planar glide. Materials Science and Technology, 2017, 33, 1224-1230.	0.8	10
25	Micro-plasticity of medium Mn austenitic steel: Perfect dislocation plasticity and deformation twinning. Acta Materialia, 2017, 135, 112-123.	3.8	46
26	Quenching and partitioning (Q&P) processing of fully austenitic stainless steels. Acta Materialia, 2017, 133, 346-355.	3.8	58
27	Tempering of Martensite and Subsequent Redistribution of Cr, Mn, Ni, Mo, and Si Between Cementite and Martensite Studied by Magnetic Measurements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5805-5812.	1.1	14
28	Dilatometry Analysis of Dissolution of Cr-Rich Carbides in Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5771-5777.	1.1	19
29	Volumetric changes associated with B2-(Ni,Fe)Al dissolution in an Al-alloyed ferritic steel. Materials and Design, 2016, 111, 640-645.	3.3	12
30	Anomalous stabilization of austenitic stainless steels at cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 675, 415-420.	2.6	28
31	Microstructural Evolution of an Al-Alloyed Duplex Stainless Steel During Tensile Deformation Between 77 K and 473 K (â~'196°C and 200°C). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2705-2716.	1.1	12
32	Influence of Martensite Fraction on Tensile Properties of Quenched and Partitioned (Q&P) Martensitic Stainless Steels. Steel Research International, 2016, 87, 1082-1094.	1.0	33
33	Contributions of ε and α′ TRIP Effects to the Strength and Ductility of AISI 304 (X5CrNi18-10) Austenitic Stainless Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 112-122.	1.1	31
34	Influence of Martensite Fraction on the Stabilization of Austenite in Austenitic–Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 1947-1959.	1.1	24
35	Influence of Al on the temperature dependence of strain hardening behavior and glide planarity in Fe–Cr–Ni–Mn–C austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 301-312.	2.6	31
36	Effect of Vanadium Nitride Precipitation on Martensitic Transformation and Mechanical Properties of CrMnNi Cast Austenitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 139-151.	1.1	10

Javad Mola

#	Article	IF	CITATIONS
37	Quantification of deformation induced α'-martensite in Fe–19Cr–3Mn–4Ni–0.15C–0.15N austen by <i>in situ</i> magnetic measurements. Materials Science and Technology, 2015, 31, 1473-1478.	itic steel	30
38	Thermal and deformation-induced phase transformation behavior of Fe–15Cr–3Mn–3Ni–0.1N–(0.05–0.25)C austenitic and austenitic–martensitic cast stainless stee Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 28-39.	^{.S.} 2.6	32
39	Segregation-Induced Enhancement of Low-Temperature Tensile Ductility in a Cast High-Nitrogen Austenitic Stainless Steel Exhibiting Deformation-Induced α′ Martensite Formation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 1450-1454.	1.1	24
40	Experimental Quantification of the Austeniteâ€ <scp>S</scp> tabilizing Effect of Mn in Cr <scp>M</scp> n <scp>N</scp> i Asâ€ <scp>C</scp> ast Stainless Steels. Steel Research International, 2014, 85, 803-810.	1.0	24
41	Microstructure and mechanical properties of Al-alloyed Fe–Cr–Ni–Mn–C stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 46-55.	2.6	24
42	Quenching and Partitioning (Q&P) Processing of Martensitic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 946-967.	1.1	95
43	Effect of Manganese on Microstructure and Mechanical Properties of Cast High Alloyed Cr <scp>M</scp> n <scp>N</scp> iâ€ <scp>N</scp> Steels. Advanced Engineering Materials, 2013, 15, 558-565.	1.6	48
44	Conversion Model for the Martensitic Transformation of Banded Austenite in a Ferrite Matrix. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4921-4925.	1.1	5
45	Ridging Control in Transformable Ferritic Stainless Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 228-244.	1.1	31
46	Quenching and partitioning processing of transformable ferritic stainless steels. Scripta Materialia, 2011, 65, 834-837.	2.6	49
47	Dilatometric Analysis of Anisotropic Dimensional Changes in a 16ÂPct Cr Stainless Steel with a Planar Banded Structure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 1429-1440.	1.1	18
48	Influence of the Cold Rolling and Annealing Sequence on the Ridging Behaviour of Ti‣tabilized 18% Cr Ferritic Stainless Steel. Steel Research International, 2010, 81, 1089-1096.	1.0	23
49	Characterisation of phase segregation during back extrusion of ZA27 semisolid alloy. Materials Science and Technology, 2007, 23, 113-118.	0.8	4
50	Phase Segregation Susceptibility of ZA27 Alloy at Different Shear Rates. Solid State Phenomena, 2006, 116-117, 225-230.	0.3	1
51	Joining Metals by Combining Mechanical Stirring and Thermomechanical Treatment to Form a Globular Weld Structure. Solid State Phenomena, 2006, 116-117, 397-401.	0.3	17
52	Influence of Texture on Ridging and Formability of 16%Cr Ferritic Stainless Steel. Solid State Phenomena, 0, 160, 153-158.	0.3	8
53	Considerations in the Design of Formable Austenitic Stainless Steels Based on Deformation-Induced Processes. , 0, , .		2
54	Joining Metals by Combining Mechanical Stirring and Thermomechanical Treatment to Form a Globular Weld Structure. Solid State Phenomena, 0, , 397-401.	0.3	0