List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6729232/publications.pdf Version: 2024-02-01

MYLING LUN KIM

#	Article	IF	CITATIONS
1	Quaternary ammonium-based levelers for high-speed microvia filling via Cu electrodeposition. Electrochimica Acta, 2022, 419, 140389.	2.6	5
2	Improving the Performance of Aqueous Zincâ€ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress. Chemistry - an Asian Journal, 2022, 17, .	1.7	9
3	Eight-Fold Intensification of Electrochemical Azidooxygenation with a Flow-Through Electrode. ACS Sustainable Chemistry and Engineering, 2022, 10, 7648-7657.	3.2	7
4	lsotropic lodide Adsorption Causes Anisotropic Growth of Copper Microplates. Chemistry of Materials, 2021, 33, 881-891.	3.2	24
5	Competitive adsorption between bromide ions and bis(3-sulfopropyl)-disulfide for Cu microvia filling. Electrochimica Acta, 2021, 370, 137707.	2.6	17
6	Impact of Surface Hydrophilicity on Electrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 11940-11947.	4.0	65
7	The effects of polyvinylpyrrolidone molecular weight on defect-free filling of through-glass vias (TGVs). Journal of Industrial and Engineering Chemistry, 2021, 96, 376-381.	2.9	9
8	Understanding the Solution-Phase Growth of Cu and Ag Nanowires and Nanocubes from First Principles. Langmuir, 2021, 37, 4419-4431.	1.6	11
9	Through Silicon Via Filling with Suppression Breakdown of PEG–Br [–] in Absence of Accelerator. Journal of the Electrochemical Society, 2021, 168, 082510.	1.3	4
10	In situ formation of graphene/metal oxide composites for high-energy microsupercapacitors. NPG Asia Materials, 2020, 12, .	3.8	27
11	Alkaline Water Electrolysis at 25 A cm ^{â^'2} with a Microfibrous Flowâ€ŧhrough Electrode. Advanced Energy Materials, 2020, 10, 2001174.	10.2	66
12	Bromide Ion as a Leveler for High-Speed TSV Filling. Journal of the Electrochemical Society, 2019, 166, D546-D550.	1.3	20
13	High strength Cu foil without self-annealing prepared by 2M5S-PEG-SPS. Korean Journal of Chemical Engineering, 2019, 36, 981-987.	1.2	11
14	Selective Electroplating for 3Dâ€Printed Electronics. Advanced Materials Technologies, 2019, 4, 1900126.	3.0	32
15	Metal Nanowire Felt as a Flow-Through Electrode for High-Productivity Electrochemistry. ACS Nano, 2019, 13, 6998-7009.	7.3	30
16	One-step electrodeposition of copper on conductive 3D printed objects. Additive Manufacturing, 2019, 27, 318-326.	1.7	61
17	Accelerating electrochemistry with metal nanowires. Current Opinion in Electrochemistry, 2019, 16, 19-27.	2.5	28
18	One-Dimensional Metal Nanostructures: From Colloidal Syntheses to Applications. Chemical Reviews, 2019. 119. 8972-9073.	23.0	240

#	Article	IF	CITATIONS
19	Electrochemical investigations of metal nanostructure growth with single crystals. Nanoscale, 2019, 11, 21709-21723.	2.8	12
20	Electrodeposition of Cu-Ag films in ammonia-based electrolyte. Journal of Alloys and Compounds, 2019, 775, 639-646.	2.8	12
21	Communication—Acceleration of TSV Filling by Adding Thiourea to PEG-PPG-SPS-lâ^. Journal of the Electrochemical Society, 2018, 165, D91-D93.	1.3	17
22	Modulating the Growth Rate, Aspect Ratio, and Yield of Copper Nanowires with Alkylamines. Chemistry of Materials, 2018, 30, 2809-2818.	3.2	49
23	Multigram Synthesis of Cuâ€Ag Core–Shell Nanowires Enables the Production of a Highly Conductive Polymer Filament for 3D Printing Electronics. Particle and Particle Systems Characterization, 2018, 35, 1700385.	1.2	73
24	Single-Crystal Electrochemistry Reveals Why Metal Nanowires Grow. Journal of the American Chemical Society, 2018, 140, 14740-14746.	6.6	76
25	Electrodeposited Ag catalysts for the electrochemical reduction of CO 2 to CO. Applied Catalysis B: Environmental, 2017, 208, 35-43.	10.8	122
26	Ethylenediamine Promotes Cu Nanowire Growth by Inhibiting Oxidation of Cu(111). Journal of the American Chemical Society, 2017, 139, 277-284.	6.6	69
27	Effect of Morphology on the Electrical Resistivity of Silver Nanostructure Films. ACS Applied Materials & Interfaces, 2017, 9, 1870-1876.	4.0	85
28	3D printing electronic components and circuits with conductive thermoplastic filament. Additive Manufacturing, 2017, 18, 156-163.	1.7	197
29	Morphology control of noble metal catalysts from planar to dendritic shapes by galvanic displacement. Applied Catalysis B: Environmental, 2017, 217, 313-321.	10.8	18
30	Fabrication of Au Catalysts for Electrochemical Reduction of CO ₂ to Syngas. Journal of Nanoscience and Nanotechnology, 2016, 16, 10846-10852.	0.9	9
31	Electrochemical CO 2 reduction to CO on dendritic Ag–Cu electrocatalysts prepared by electrodeposition. Chemical Engineering Journal, 2016, 299, 37-44.	6.6	140
32	Voltammetric Observation of Transient Catalytic Behavior of SPS in Copper Electrodeposition—Its Interaction with Cuprous Ion from Comproportionation. Journal of the Electrochemical Society, 2016, 163, D428-D433.	1.3	12
33	Communication—Monitoring the Average Molecular Weight of Polyethylene Glycol in an Acidic Cu Plating Bath. Journal of the Electrochemical Society, 2016, 163, D747-D749.	1.3	5
34	The Influences of Iodide Ion on Cu Electrodeposition and TSV Filling. Journal of the Electrochemical Society, 2016, 163, D434-D441.	1.3	26
35	Communication—Halide Ions in TEG-Based Levelers Affecting TSV Filling Performance. Journal of the Electrochemical Society, 2016, 163, D185-D187.	1.3	23
36	High Accuracy Concentration Analysis of Accelerator Components in Acidic Cu Superfilling Bath. Journal of the Electrochemical Society, 2016, 163, D33-D39.	1.3	11

#	Article	IF	CITATIONS
37	Porous indium electrode with large surface area for effective electroreduction of N 2 O. Electrochemistry Communications, 2016, 62, 13-16.	2.3	11
38	Accuracy Improvement in Cyclic Voltammetry Stripping Analysis of Thiourea Concentration in Copper Plating Baths. Journal of the Electrochemical Society, 2015, 162, H294-H300.	1.3	8
39	Bottom-up Filling of through Silicon Vias Using Galvanostatic Cu Electrodeposition with the Modified Organic Additives. Journal of the Electrochemical Society, 2015, 162, D109-D114.	1.3	22
40	Electrochemical Behavior of Citric Acid and Its Influence on Cu Electrodeposition for Damascene Metallization. Journal of the Electrochemical Society, 2015, 162, D354-D359.	1.3	18
41	Mobility of black pigments for electrophoretic display depending on the characteristics of carbon sphere. Dyes and Pigments, 2015, 121, 276-281.	2.0	5
42	Galvanostatic bottom-up filling of TSV-like trenches: Choline-based leveler containing two quaternary ammoniums. Electrochimica Acta, 2015, 163, 174-181.	2.6	42
43	Investigation of Cu growth phenomena on Ru substrate during electroless deposition using hydrazine as a reducing agent. Electrochimica Acta, 2015, 151, 249-255.	2.6	16
44	Atomic layer deposition of copper nitride film and its application to copper seed layer for electrodeposition. Thin Solid Films, 2014, 556, 434-439.	0.8	25
45	Catalytic growth of a colloidal carbon sphere by hydrothermal reaction with iron oxide (Fe3O4) catalyst. Materials Letters, 2014, 125, 213-217.	1.3	17
46	Effects of nitrogen atoms of benzotriazole and its derivatives on the properties of electrodeposited Cu films. Thin Solid Films, 2014, 550, 421-427.	0.8	9
47	Direct Cu Electrodeposition on Electroless Deposited NiWP Barrier Layer on SiO ₂ Substrate for All-Wet Metallization Process. Journal of the Electrochemical Society, 2014, 161, D756-D760.	1.3	8
48	Electrodeposition of Cu Films with Low Resistivity and Improved Hardness Using Additive Derivatization. Journal of the Electrochemical Society, 2014, 161, D749-D755.	1.3	15
49	The effect of inducing uniform Cu growth on formation of electroless Cu seed layer. Thin Solid Films, 2014, 564, 299-305.	0.8	5
50	Cu direct electrodeposition using step current for superfilling on Ru-Al2O3 layer. Electrochimica Acta, 2014, 147, 371-379.	2.6	1
51	In-situ transmittance measurement for characterization of organic additives in Cu electroless deposition. Journal of Electroanalytical Chemistry, 2014, 731, 157-162.	1.9	2
52	Degradation of poly(ethylene glycol–propylene glycol) copolymer and its influences on copper electrodeposition. Journal of Electroanalytical Chemistry, 2014, 714-715, 85-91.	1.9	17
53	Electrodeposition for the Fabrication of Copper Interconnection in Semiconductor Devices. Korean Chemical Engineering Research, 2014, 52, 26-39.	0.2	17
54	Effects of AlOx incorporation into atomic layer deposited Ru thin films: Applications to Cu direct plating technology. Journal of Alloys and Compounds, 2013, 580, 72-81.	2.8	10

#	Article	IF	CITATIONS
55	Pulse-Reverse Electrodeposition of Cu for the Fabrication of Metal Interconnection. Journal of the Electrochemical Society, 2013, 160, D3081-D3087.	1.3	17
56	One-Pot Synthesis of PdAu-Au Core-Shell Bimetallic Nanoparticles Using Electrodeposition and Their Optical Property. Journal of the Electrochemical Society, 2013, 160, E1-E4.	1.3	9
57	Seed Repair by Electrodeposition in Pyrophosphate Solution for Acid Cu Superfilling. Journal of the Electrochemical Society, 2013, 160, D202-D205.	1.3	12
58	Cu Bottom-Up Filling for Through Silicon Vias with Growing Surface Established by the Modulation of Leveler and Suppressor. Journal of the Electrochemical Society, 2013, 160, D3221-D3227.	1.3	43
59	Direct Cu Electrodeposition on Ta Using Pd Nanocolloids: Effect of Allyl Alcohol on the Formation of Seed Layer. Journal of the Electrochemical Society, 2013, 160, D3206-D3210.	1.3	1
60	Degradation of Bis(3-sulfopropyl) Disulfide and Its Influence on Copper Electrodeposition for Feature Filling. Journal of the Electrochemical Society, 2013, 160, D3179-D3185.	1.3	30
61	Real-Time Observation of Cu Electroless Deposition: Effect of EDTA on Removing of Cu Oxide and Adsorption of Formaldehyde. Journal of the Electrochemical Society, 2013, 160, D3134-D3138.	1.3	3
62	Fabrication of Cu-Ag Interconnection Using Electrodeposition: The Mechanism of Superfilling and the Properties of Cu-Ag Film. Journal of the Electrochemical Society, 2013, 160, D3126-D3133.	1.3	17
63	Pulse-Reverse Electrodeposition of Cu for the Fabrication of Metal Interconnection. Journal of the Electrochemical Society, 2013, 160, D3088-D3092.	1.3	14
64	Direct Electrodeposition of Cu on Ru-Al2O3Layer. Journal of the Electrochemical Society, 2013, 160, D3057-D3062.	1.3	7
65	Real-Time Observation of Cu Electroless Deposition: Adsorption Behavior of PEG during Cu Electroless Deposition. Journal of the Electrochemical Society, 2013, 160, D3015-D3020.	1.3	7
66	Facile Formation of Cu-Ag Film by Electrodeposition for the Oxidation-Resistive Metal Interconnect. Journal of the Electrochemical Society, 2012, 159, D253-D259.	1.3	17
67	Real-Time Observation of Cu Electroless Deposition Using OCP Measurement Assisted by QCM. Journal of the Electrochemical Society, 2012, 159, D724-D729.	1.3	10
68	Characteristics of Pulse-Reverse Electrodeposited Cu Thin Film. Journal of the Electrochemical Society, 2012, 159, D544-D548.	1.3	18
69	Conformal Cu Seed Layer Formation by Electroless Deposition in Non-Bosch through Silicon Vias. Electrochemical and Solid-State Letters, 2012, 15, D26.	2.2	11
70	Superfilling of Cu-Ag Using Electrodeposition in Cyanide-Based Electrolyte. Journal of the Electrochemical Society, 2012, 159, D656-D658.	1.3	21
71	Optimization of Catalyzing Process on Ta Substrate for Copper Electroless Deposition Using Electrochemical Method. Journal of the Electrochemical Society, 2012, 159, D142-D147.	1.3	9
72	Characteristics of Pulse-Reverse Electrodeposited Cu Thin Films. Journal of the Electrochemical Society, 2012, 159, D538-D543.	1.3	21

#	Article	IF	CITATIONS
73	Low-resistivity Cu film electrodeposited with 3-N,N-dimethylaminodithiocarbamoyl-1-propanesulfonate for the application to the interconnection of electronic devices. Thin Solid Films, 2012, 520, 2136-2141.	0.8	19
74	Deposit profiles characterized by the seed layer in Cu pulse-reverse plating on a patterned substrate. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 011004.	0.6	7
75	Evaluation of Stability and Reactivity of Cu Electroless Deposition Solution by In-Situ Transmittance Measurement. Journal of the Electrochemical Society, 2011, 158, D541.	1.3	9
76	Room-Temperature Electroless Deposition of CoB Film and its Application as In Situ Capping during Buffing Process. Electrochemical and Solid-State Letters, 2011, 14, D95.	2.2	4
77	MSA as a Supporting Electrolyte in Copper Electroplating for Filling of Damascene Trenches and Through Silicon Vias. Electrochemical and Solid-State Letters, 2011, 14, D52.	2.2	35
78	Pulse Electrodeposition for Improving Electrical Properties of Cu Thin Film. Journal of the Electrochemical Society, 2010, 157, D564.	1.3	23