Moheddine Askri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6728996/publications.pdf

Version: 2024-02-01

687363 794594 19 539 13 19 citations h-index g-index papers 20 20 20 482 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A strategic approach to the synthesis of functionalized spirooxindole pyrrolidine derivatives: in vitro antibacterial, antifungal, antimalarial and antitubercular studies. New Journal of Chemistry, 2015, 39, 520-528.	2.8	98
2	Regio- and Stereoselective Synthesis of Spiropyrrolizidines and Piperazines through Azomethine Ylide Cycloaddition Reaction. Journal of Organic Chemistry, 2015, 80, 9064-9075.	3.2	73
3	Synthesis, antidiabetic activity and molecular docking study of rhodanine-substitued spirooxindole pyrrolidine derivatives as novel \hat{l}_{\pm} -amylase inhibitors. Bioorganic Chemistry, 2021, 106, 104507.	4.1	64
4	Synthesis of new spirooxindole derivatives through 1,3-dipolar cycloaddition of azomethine ylides and their antitubercular activity. Tetrahedron Letters, 2016, 57, 163-167.	1.4	43
5	Design of novel dispirooxindolopyrrolidine and dispirooxindolopyrrolothiazole derivatives as potential antitubercular agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4308-4313.	2.2	35
6	Synthesis of novel dispiropyrrolothiazoles by three-component 1,3-dipolar cycloaddition and evaluation of their antimycobacterial activity. RSC Advances, 2014, 4, 59462-59471.	3.6	33
7	Diversity-Oriented Synthesis of Spiropyrrolo[1,2- <i>a-</i>]isoquinoline Derivatives via Diastereoselective and Regiodivergent Three-Component 1,3-Dipolar Cycloaddition Reactions: <i>In Vitro-</i> and <i>in Vivo-</i> Evaluation of the Antidiabetic Activity of Rhodanine Analogues. Journal of Organic Chemistry, 2021, 86, 13420-13445.	3.2	30
8	Highly diastereoselective construction of novel dispiropyrrolo[2,1- <i>a</i>) isoquinoline derivatives <i>via</i> multicomponent 1,3-dipolar cycloaddition of cyclic diketones-based tetrahydroisoquinolinium <i>N</i> -ylides. RSC Advances, 2019, 9, 11082-11091.	3.6	29
9	Three-Component Access to Functionalized Spiropyrrolidine Heterocyclic Scaffolds and Their Cholinesterase Inhibitory Activity. Molecules, 2020, 25, 1963.	3.8	21
10	One-pot four-component domino strategy for the synthesis of novel spirooxindole–pyrrolidine/pyrrolizidine-linked 1,2,3-triazole conjugates via stereo- and regioselective [3+2] cycloaddition reactions: InÂvitro antibacterial and antifungal studies. Comptes Rendus Chimie, 2018, 21, 41-53.	0.5	20
11	Antimicrobial Activity and DFT Studies of a Novel Set of Spiropyrrolidines Tethered with Thiochroman-4-one/Chroman-4-one Scaffolds. Molecules, 2022, 27, 582.	3.8	20
12	Stoichiometry-controlled cycloaddition of nitrilimines with unsymmetrical exocyclic dienones: microwave-assisted synthesis of novel mono- and dispiropyrazoline derivatives. RSC Advances, 2016, 6, 49868-49875.	3.6	17
13	Synthesis of New Spirooxindoleâ€Fused Isoxazoline/Triazole and Isoxazoline/Isoxazole Derivatives from Threeâ€Component 1,3â€Dipolar Cycloaddition. Journal of Heterocyclic Chemistry, 2017, 54, 3554-3564.	2.6	13
14	Spiroheterocycles from the Reaction of Arylnitrile Oxides with Some (Z)-3-Arylidene-2(3H)-benzofuranones. New Access to Orthohydroxyphenylisoxazoline Esters. Heterocycles, 2007, 71, 289.	0.7	11
15	Regioselective Synthesis of Mono―and Dispiropyrazoline Derivatives via 1,3â€dipolar Cycloaddition with Nitrilimines. Journal of Heterocyclic Chemistry, 2017, 54, 1152-1160.	2.6	9
16	New spiropyrrolothiazole derivatives bearing an oxazolone moiety as potential antidiabetic agent: Design, synthesis, crystal structure, Hirshfeld surface analysis, ADME and molecular docking studies. Journal of Molecular Structure, 2022, 1254, 132398.	3.6	8
17	An Efficient One Pot Synthesis of New Indanopyrazoline and Indanopyrazole Derivatives. Letters in Organic Chemistry, 2011, 8, 268-273.	0.5	6
18	Straightforward and Highly Diastereoselective Synthesis of a New Set of Functionalized Dispiropyrrolidines Involving Multicomponent 1,3â€Dipolar Cycloaddition with Azomethine Ylides. Journal of Heterocyclic Chemistry, 2019, 56, 1748-1756.	2.6	5

#	ARTICLE	IF	CITATIONS
19	Synthesis of highly substituted spiropyrrolidines via 1, 3-dipolar cycloaddition reaction of N-metalated azomethine ylides. A new access to spiropyrrolines derivatives. Mediterranean Journal of Chemistry, 2015, 4, 30-50.	0.7	4