
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6728812/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 2020, 827, 153548.	2.8	518
2	Magnesium based materials for hydrogen based energy storage: Past, present and future. International Journal of Hydrogen Energy, 2019, 44, 7809-7859.	3.8	460
3	Mechanochemical synthesis of hydrogen storage materials. Progress in Materials Science, 2013, 58, 30-75.	16.0	345
4	Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties. Journal of the American Chemical Society, 2010, 132, 2991-2997.	6.6	320
5	Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Transactions, 2011, 40, 4879.	1.6	257
6	Intermetallic compounds as negative electrodes of Ni/MH batteries. Applied Physics A: Materials Science and Processing, 2001, 72, 225-238.	1.1	182
7	Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 2020, 817, 153261.	2.8	144
8	Hydrogen storage properties of Pd nanoparticle/carbon template composites. Carbon, 2008, 46, 206-214.	5.4	129
9	Synthesis, structural and hydrogenation properties of Mg-rich MgH ₂ –TiH ₂ nanocomposites prepared by reactive ball milling under hydrogen gas. Physical Chemistry Chemical Physics, 2012, 14, 1200-1211.	1.3	123
10	Occurrence of Uncommon Infinite Chains Consisting of Edge-Sharing Octahedra in a Porous Metal Organic Framework-Type Aluminum Pyromellitate Al ₄ (OH) ₈ [C ₁₀ 0 ₈ H ₂] (MIL-120): Synthesis, Structure, and Gas Sorption Properties. Chemistry of Materials, 2009, 21, 5783-5791.	3.2	102
11	Elaboration and characterization of magnesium-substituted La5Ni19 hydride forming alloys as active materials for negative electrode in Ni-MH battery. Electrochimica Acta, 2009, 54, 1710-1714.	2.6	101
12	Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103. International Journal of Hydrogen Energy, 2016, 41, 14404-14428.	3.8	94
13	Substitutional effects in TiFe for hydrogen storage: a comprehensive review. Materials Advances, 2021, 2, 2524-2560.	2.6	90
14	Size-Dependent Hydrogen Sorption in Ultrasmall Pd Clusters Embedded in a Mesoporous Carbon Template. Journal of the American Chemical Society, 2010, 132, 7720-7729.	6.6	89
15	Hydrogen storage in hybrid nanostructured carbon/palladium materials: Influence of particle size and surface chemistry. International Journal of Hydrogen Energy, 2013, 38, 952-965.	3.8	87
16	Highlighting of a Single Reaction Path during Reactive Ball Milling of Mg and TM by Quantitative H ₂ Gas Sorption Analysis To Form Ternary Complex Hydrides (TM = Fe, Co, Ni). Journal of Physical Chemistry C, 2011, 115, 4971-4979.	1.5	79
17	Carboxymethylcellulose and carboxymethylcellulose-formate as binders in MgH2–carbon composites negative electrode for lithium-ion batteries. Journal of Power Sources, 2011, 196, 2854-2857.	4.0	77
18	Mechanical milling and subsequent annealing effects on the microstructural and hydrogenation properties of multisubstituted LaNi5 alloy. Acta Materialia, 2005, 53, 2157-2167.	3.8	71

FERMIN CUEVAS

#	Article	IF	CITATIONS
19	Influence of crystallinity on the structural and hydrogenation properties of Mg2X phases (X=Ni, Si,) Tj ETQq1 🕻	0.784314	rgBT ₇₁ /Overloc
20	Mechanochemistry of Metal Hydrides: Recent Advances. Materials, 2019, 12, 2778.	1.3	71
21	LaNi5 related AB5 compounds: Structure, properties and applications. Journal of Alloys and Compounds, 2021, 862, 158163.	2.8	64
22	Reactivity of TiH2 hydride with lithium ion: Evidence for a new conversion mechanism. International Journal of Hydrogen Energy, 2012, 37, 7831-7835.	3.8	62
23	Tunable synthesis of (Mg–Ni)-based hydrides nanoconfined in templated carbon studied by in situ synchrotron diffraction. Nano Energy, 2013, 2, 12-20.	8.2	61
24	Simultaneous differential scanning calorimetry and thermal desorption spectroscopy measurements for the study of the decomposition of metal hydrides. Journal of Alloys and Compounds, 2000, 298, 244-253.	2.8	60
25	Hydrogen spillover measurements of unbridged and bridged metal–organic frameworks—revisited. Physical Chemistry Chemical Physics, 2010, 12, 10457.	1.3	57
26	Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions. International Journal of Hydrogen Energy, 2013, 38, 4798-4808.	3.8	56
27	Synthesis of small metallic Mg-based nanoparticles confined in porous carbon materials for hydrogen sorption. Faraday Discussions, 2011, 151, 117.	1.6	54
28	Structural and electrochemical properties of amorphous rich Mg Ni100â^' nanomaterial obtained by mechanical alloying. Journal of Alloys and Compounds, 2003, 356-357, 557-561.	2.8	53
29	Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. Journal of Materials Chemistry A, 2019, 7, 23064-23075.	5.2	53
30	Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. International Journal of Hydrogen Energy, 2020, 45, 33687-33730.	3.8	53
31	Understanding the mechanism of hydrogen uptake at low pressure in carbon/palladium nanostructured composites. Journal of Materials Chemistry, 2011, 21, 17765.	6.7	50
32	Metal hydrides used as negative electrode materials for Li-ion batteries. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	48
33	An all-solid-state metal hydride – Sulfur lithium-ion battery. Journal of Power Sources, 2017, 357, 56-60.	4.0	46
34	Full-cell hydride-based solid-state Li batteries for energy storage. International Journal of Hydrogen Energy, 2019, 44, 7875-7887.	3.8	46
35	Nanostructured Si/Sn–Ni/C composite as negative electrode for Li-ion batteries. Journal of Power Sources, 2011, 196, 4762-4768.	4.0	44
36	Li-Driven Electrochemical Conversion Reaction of AlH ₃ , LiAlH ₄ , and NaAlH ₄ . Journal of Physical Chemistry C, 2015, 119, 4666-4674.	1.5	44

#	Article	IF	CITATIONS
37	Structural Properties and Reversible Deuterium Loading of MgD ₂ –TiD ₂ Nanocomposites. Journal of Physical Chemistry C, 2013, 117, 18851-18862.	1.5	42
38	In situ synthesis and hydrogen storage properties of PdNi alloy nanoparticles in an ordered mesoporous carbon template. Microporous and Mesoporous Materials, 2009, 117, 511-514.	2.2	39
39	Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn. Journal of Alloys and Compounds, 2021, 874, 159925.	2.8	39
40	XAS investigations on nanocrystalline Mg2FeH6 used as a negative electrode of Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4706.	5.2	38
41	Improvement of the hydrogen storage properties of Ti–Cr–V–Fe BCC alloy by Ce addition. Journal of Alloys and Compounds, 2009, 476, 403-407.	2.8	37
42	Synthesis by reactive ball milling and cycling properties of MgH2–TiH2 nanocomposites: Kinetics and isotopic effects. International Journal of Hydrogen Energy, 2014, 39, 9918-9923.	3.8	37
43	A novel method for the synthesis of solvent-free Mg(B ₃ H ₈) ₂ . Dalton Transactions, 2016, 45, 3687-3690.	1.6	35
44	Optimization of TiH2 content for fast and efficient hydrogen cycling of MgH2-TiH2 nanocomposites. International Journal of Hydrogen Energy, 2018, 43, 16774-16781.	3.8	35
45	Influence of the martensitic transformation on the hydrogenation properties of Ti50â^'xZrxNi50 alloys. Journal of Alloys and Compounds, 2002, 330-332, 250-255.	2.8	34
46	Microstructural analysis of the ageing of pseudo-binary (Ti,Zr)Ni intermetallic compounds as negative electrodes of Ni-MH batteries. Electrochimica Acta, 2009, 54, 2781-2789.	2.6	34
47	Hydrogen storage properties of Mn and Cu for Fe substitution in TiFe0.9 intermetallic compound. Journal of Alloys and Compounds, 2021, 851, 156075.	2.8	34
48	Gas-phase synthesis of Mg–Ti nanoparticles for solid-state hydrogen storage. Physical Chemistry Chemical Physics, 2016, 18, 141-148.	1.3	33
49	Milling effect on the microstructural and hydrogenation properties of TiFe0.9Mn0.1 alloy. Powder Technology, 2018, 339, 903-910.	2.1	32
50	Mechanistic and Kinetic Study of the Electrochemical Charge and Discharge of La2MgNi9 by in Situ Powder Neutron Diffraction. Journal of Physical Chemistry C, 2014, 118, 12162-12169.	1.5	31
51	Simulation and design of a three-stage metal hydride hydrogen compressor based on experimental thermodynamic data. International Journal of Hydrogen Energy, 2018, 43, 6666-6676.	3.8	30
52	Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties. Progress in Energy, 2022, 4, 032007.	4.6	29
53	A thermodynamic study of the hydrogenation of the pseudo-binary Mg6Pd0.5Ni0.5 intermetallic compound. Intermetallics, 2010, 18, 233-241.	1.8	28
54	Hydrogenation properties of shape memory Ti(Ni,Pd) compounds. Intermetallics, 2011, 19, 876-886.	1.8	28

4

#	Article	IF	CITATIONS
55	Nanostructures of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>Mg </mml:mtext> </mml:mrow> <mml:mrow with x-ray diffraction, neutron diffraction, and magic-angle-spinning <mml:math xmlns:mml="http://www. Physical Review B, 2010, 81, .</mml:math </mml:mrow </mml:msub></mml:mrow></mml:math>	w> <mml:m 1.1</mml:m 	ns0.65
56	Metallic and complex hydride-based electrochemical storage of energy. Progress in Energy, 2022, 4, 032001.	4.6	26
57	A conjoint XRD–ND analysis of the crystal structures of austenitic and martensitic Ti0.64Zr0.36Ni hydrides. Journal of Solid State Chemistry, 2006, 179, 3295-3307.	1.4	25
58	Solid–gas and electrochemical hydrogenation properties of pseudo-binary (Ti,Zr)Ni intermetallic compounds. International Journal of Hydrogen Energy, 2008, 33, 5795-5800.	3.8	25
59	Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties. International Journal of Hydrogen Energy, 2019, 44, 10770-10776.	3.8	25
60	The hydrogen desorption kinetics of Pd-coated LaNi5-type films. Journal of Alloys and Compounds, 2000, 313, 269-275.	2.8	24
61	Influence of the microstructure on the desorption kinetics of single- and multiphase LaNiFe alloys. Journal of Alloys and Compounds, 1998, 266, 255-259.	2.8	23
62	Relationship between polymorphism and hydrogenation properties in Ti0.64Zr0.36Ni alloy. Journal of Alloys and Compounds, 2005, 404-406, 545-549.	2.8	23
63	Pseudo-ternary LiBH ₄ ·LiCl·P ₂ S ₅ system as structurally disordered bulk electrolyte for all-solid-state lithium batteries. Physical Chemistry Chemical Physics, 2020, 22, 13872-13879.	1.3	23
64	In operando neutron diffraction study of LaNdMgNi9H13 as a metal hydride battery anode. Journal of Power Sources, 2017, 343, 502-512.	4.0	22
65	X-ray Diffraction and NMR Studies of Na _{3â^'<i>n</i>} Li _{<i>n</i>} AlH ₆ (<i>n</i> = 0, 1, 2) Alanates Synthesized by High-Pressure Reactive Ball Milling. Journal of Physical Chemistry C, 2009, 113, 21242-21252.	1.5	21
66	Synthesis of Mg2Cu nanoparticles on carbon supports with enhanced hydrogen sorption kinetics. Journal of Materials Chemistry A, 2013, 1, 9983.	5.2	21
67	Ti(Ni,Cu) pseudobinary compounds as efficient negative electrodes for Ni–MH batteries. Journal of Power Sources, 2014, 265, 182-191.	4.0	21
68	In operando neutron diffraction study of a commercial graphite/(Ni, Mn, Co) oxide-based multi-component lithium ion battery. Journal of Power Sources, 2016, 326, 93-103.	4.0	21
69	The Vision of France, Germany, and the European Union on Future Hydrogen Energy Research and Innovation. Engineering, 2021, 7, 715-718.	3.2	21
70	Effects of Si addition on the microstructure and the hydrogen storage properties of Ti26.5V45Fe8.5Cr20Ce0.5 BCC solid solution alloys. International Journal of Hydrogen Energy, 2009, 34, 9385-9392.	3.8	20
71	Hydrogen Storage in Pristine and d10-Block Metal-Anchored Activated Carbon Made from Local Wastes. Energies, 2015, 8, 3578-3590.	1.6	20
72	Enhanced reversibility of the electrochemical Li conversion reaction with MgH 2 –TiH 2 nanocomposites. International Journal of Hydrogen Energy, 2017, 42, 22615-22621.	3.8	20

#	Article	IF	CITATIONS
73	Nanostructured Ni3.5Sn4 intermetallic compound: An efficient buffering material for Si-containing composite anodes in lithium ion batteries. Electrochimica Acta, 2013, 89, 365-371.	2.6	19
74	Ni–Sn intermetallics as an efficient buffering matrix of Si anodes in Li-ion batteries. Journal of Materials Chemistry A, 2020, 8, 18132-18142.	5.2	19
75	Interaction of hydrogen with the β-Al3Mg2 complex metallic alloy: Experimental reliability of theoretical predictions. Journal of Alloys and Compounds, 2009, 472, 565-570.	2.8	18
76	In situ neutron diffraction study on Pd-doped Mg0.65Sc0.35 electrode material. Journal of Solid State Chemistry, 2008, 181, 1141-1148.	1.4	17
77	Crystal structure and hydrogenation properties of pseudo-binary Mg6Pd0.5Ni0.5 complex metallic alloy. Journal of Solid State Chemistry, 2009, 182, 2890-2896.	1.4	17
78	Reversible hydrogen storage in the Ni-rich pseudo-binary Mg6Pd0.25Ni0.75 intermetallic compound: Reaction pathway, thermodynamic and kinetic properties. Journal of Alloys and Compounds, 2013, 548, 96-104.	2.8	17
79	Influence of the preparation conditions of titanium hydride and deuteride TiHx(Dx) (X â‰^ 2.00) on the specific heat around the Î́-É→ transition. Journal of Alloys and Compounds, 1995, 231, 78-84.	2.8	16
80	Influence of thermal annealing on the hydrogenation properties of mechanically milled AB5-type alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 76-80.	1.7	16
81	Thermodynamics and reaction pathways of hydrogen sorption in Mg6(Pd,TM) (TMÂ=ÂAg, Cu and Ni) pseudo-binary compounds. International Journal of Hydrogen Energy, 2014, 39, 18291-18301.	3.8	16
82	Growth of pyrite thin-films investigated by thermoelectric measurements. Thin Solid Films, 2001, 387, 97-99.	0.8	15
83	Structural, solid–gas and electrochemical characterization of Mg2NiMg2Ni-rich and MgxNi100-xMgxNi100-x amorphous-rich nanomaterials obtained by mechanical alloying. International Journal of Hydrogen Energy, 2006, 31, 247-250.	3.8	15
84	Thermodynamic Properties of Trialkali (Li, Na, K) Hexa-alanates: A Combined DFT and Experimental Study. Journal of Physical Chemistry C, 2008, 112, 18598-18607.	1.5	15
85	Electrochemical properties of MgH2 – TiH2 nanocomposite as active materials for all-solid-state lithium batteries. Journal of Power Sources, 2018, 397, 143-149.	4.0	15
86	A new pseudo-binary Mg6Ni0.5Pd0.5 intermetallic compound stabilised by Pd for hydrogen storage. Journal of Alloys and Compounds, 2010, 495, 663-666.	2.8	14
87	Electronic and structural influence of Ni by Pd substitution on the hydrogenation properties of TiNi. Journal of Solid State Chemistry, 2013, 198, 475-484.	1.4	14
88	Improvement of the ionic conductivity on new substituted borohydride argyrodites. Solid State Ionics, 2019, 339, 114987.	1.3	14
89	Influence of polymorphism on the electrochemical properties of (Ti0.64Zr0.36)Ni alloys. Journal of Alloys and Compounds, 2003, 356-357, 730-733.	2.8	13
90	Zr-substitution in LaNi5-type hydride compound by room temperature ball milling. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 91-95.	1.7	13

#	Article	IF	CITATIONS
91	Supercritical fluid chemical deposition of Pd nanoparticles on magnesium–scandium alloy for hydrogen storage. Journal of Alloys and Compounds, 2013, 574, 6-12.	2.8	13
92	Nanoconfinement of Mg ₆ Pd particles in porous carbon: size effects on structural and hydrogenation properties. Journal of Materials Chemistry A, 2014, 2, 18444-18453.	5.2	13
93	Study of the multipeak deuterium thermodesorption in YFe2Dx (1.3Ââ‰ÂxÂâ‰Â4.2) by DSC, TD and in situ neutron diffraction. International Journal of Hydrogen Energy, 2009, 34, 2278-2287.	3.8	12
94	Mechanochemistry of lithium nitride under hydrogen gas. Physical Chemistry Chemical Physics, 2015, 17, 21927-21934.	1.3	12
95	Relationship between microstructure and hydrogenation properties of Ti0.85Zr0.15Mn1.5V0.5 alloy. Journal of Alloys and Compounds, 2007, 446-447, 218-223.	2.8	11
96	First-principles phase stability calculations and estimation of finite temperature effects on pseudo-binary Mg6(PdxNi1â^'x) compounds. Intermetallics, 2011, 19, 502-510.	1.8	11
97	Synthesis of TiFe Hydrogen Absorbing Alloys Prepared by Mechanical Alloying and SPS Treatment. Metals, 2018, 8, 264.	1.0	11
98	Solid-State Li-Ion Batteries Operating at Room Temperature Using New Borohydride Argyrodite Electrolytes. Materials, 2020, 13, 4028.	1.3	11
99	Effect of additives on the structure and magnetic properties of 1:7 type Sm2Fe15Ga2C3 permanent magnets. Journal of Applied Physics, 2000, 88, 6618-6622.	1.1	10
100	Formation and structure of highly over-stoichiometric LaNi5+x (xâ^¼1) alloys obtained by manifold non-equilibrium methods. Journal of Alloys and Compounds, 2001, 323-324, 4-7.	2.8	10
101	X-ray Absorption Spectroscopy and X-ray Diffraction Studies of the Thermal and Li-Driven Electrochemical Dehydrogenation of Nanocrystalline Complex Hydrides Mg ₂ MH _{<i>x</i>} (M = Co, Ni). Journal of Physical Chemistry C, 2014, 118, 29554-29567.	1.5	10
102	Phase Stabilities in the Mg–Si–H System Tuned by Mechanochemistry. Journal of Physical Chemistry C, 2014, 118, 21889-21895.	1.5	10
103	Hydrogen solubility and diffusivity in amorphous La14Ni86 films. Acta Materialia, 2003, 51, 701-712.	3.8	9
104	Microstructural effects in the hydrogenation kinetics of commercial-type LaNi5 alloy. Journal of Alloys and Compounds, 2005, 404-406, 327-331.	2.8	9
105	Hydrogenation, structure and magnetic properties of La(Fe _{0.91} Si _{0.09}) ₁₃ hydrides and deuterides. Chinese Physics B, 2011, 20, 067502.	0.7	9
106	A step forward to the dehydrogenation reversibility of amine-borane adducts by coupling sodium and hydrocarbon groups. International Journal of Hydrogen Energy, 2015, 40, 2763-2767.	3.8	9
107	Preparation of highly overstoichiometric LaNi5+x (1⩽x⩽4) single-phase films by ion beam sputtering. Journal of Applied Physics, 1999, 86, 6690-6696.	1.1	8
108	Influence of cobalt and manganese content on the dehydrogenation capacity and kinetics of air-exposed LaNi5+x-type alloys in solid gas and electrochemical reactions. Journal of Power Sources, 2007, 170, 520-526.	4.0	8

#	Article	IF	CITATIONS
109	Reactivity assessment of lithium with the different components of novel Si/Ni3.4Sn4/Al/C composite anode for Li-ion batteries. Journal of Power Sources, 2013, 238, 210-217.	4.0	8
110	Mechanochemistry and hydrogen storage properties of 2Li3N+Mg mixture. Rare Metals, 2022, 41, 4223-4229.	3.6	8
111	Cobalt induced multi-plateau behavior in TiNi-based Ni-MH electrodes. Energy Storage Materials, 2017, 8, 189-193.	9.5	8
112	Mechanosynthesis and Reversible Hydrogen Storage of Mg ₂ Ni and Mg ₂ Cu Alloys. Materials Transactions, 2019, 60, 441-449.	0.4	8
113	Experimental behaviour of a three-stage metal hydride hydrogen compressor. JPhys Energy, 2020, 2, 034006.	2.3	8
114	Intermetallic alloys as hydrogen getters. Journal of Alloys and Compounds, 2022, 905, 164173.	2.8	8
115	Observation of the β–δ phase transformation in deuterated iodide titanium films by electrical resistance measurements. Journal of Alloys and Compounds, 1997, 253-254, 158-161.	2.8	7
116	Structural and Magnetic Properties of Pd _{<i>x</i>} Ni _{1â^'<i>x</i>} (<i>x</i> = 0) Tj ETQc Chemistry C, 2009, 113, 16921-16926.	0 0 0 rgB ⁻ 1.5	[/Overlock 10 7
117	Homogeneity range and crystal structure of Ni substituted Mg6(Pd,Ni) complex intermetallic compounds. Journal of Physics and Chemistry of Solids, 2010, 71, 1259-1263.	1.9	7
118	Synthesis and properties of the Mg2Ni0.5Co0.5H4.4 hydride. Journal of Alloys and Compounds, 2015, 645, S408-S411.	2.8	7
119	Asymmetric Reaction Paths and Hydrogen Sorption Mechanism in Mechanochemically Synthesized Potassium Alanate (KAlH ₄). Journal of Physical Chemistry C, 2016, 120, 21299-21308.	1.5	7
120	Thin films as model system for understanding the electrochemical reaction mechanisms in conversion reaction of MgH2 with lithium. Journal of Power Sources, 2018, 402, 99-106.	4.0	7
121	Kinetics of the Iodide Titanium Process by the Thermal Decomposition of Titanium Tetraiodide. Journal of the Electrochemical Society, 2000, 147, 2589.	1.3	6
122	In situ neutron-diffraction study of deuterium desorption . from LaNi 5+x (x ?1) alloy. Applied Physics A: Materials Science and Processing, 2002, 74, s1175-s1177.	1.1	6
123	Influence of the Ti/Zr ratio and the synthesis route on hydrogen absorbing properties of (Ti1â°'xZrx)Mn1.5V0.5 alloys. Journal of Physics and Chemistry of Solids, 2006, 67, 1281-1285.	1.9	5
124	An investigation of the hydrogen desorption from Nd2Fe17Hx and Dy2Fe17Hx compounds by differential scanning calorimetry. Thermochimica Acta, 2013, 561, 14-18.	1.2	5
125	Structural and hydrogenation study on the ball milled TiH2–Mg–Ni. International Journal of Hydrogen Energy, 2015, 40, 4212-4218.	3.8	5
126	Surface activation and hydrogenation kinetics of ti sponge. International Journal of Hydrogen Energy, 1996, 21, 765-768.	3.8	4

#	Article	IF	CITATIONS
127	Influence of the stoichiometry on the H-desorption rates measured in solid–gas phase and electrochemical cell for air-exposed LaNi5+x-type alloys. Journal of Alloys and Compounds, 2005, 404-406, 347-350.	2.8	4
128	Mechanochemical synthesis in the Li–Mg–N–D system under deuterium gas: a neutron diffraction study. Physical Chemistry Chemical Physics, 2016, 18, 23944-23953.	1.3	4
129	Investigation of the phase occurrence and H sorption properties in the Y33.33Ni66.67Al (0Ââ‰ÂxÂâ‰Â33.33) system. Journal of Alloys and Compounds, 2021, 888, 161375.	2.8	4
130	Deuterium concentration profiles in electrochemically deuterated titanium and their evolution after electrolysis. Journal of Alloys and Compounds, 1994, 205, 303-309.	2.8	3
131	On the necessary experimental conditions to grow titanium films on hot tungsten filaments using titanium tetraiodide. Journal of Alloys and Compounds, 1995, 227, 167-174.	2.8	3
132	Kinetics of H(D)-absorption in Pd cathodes. Journal of Alloys and Compounds, 1995, 231, 655-659.	2.8	3
133	An Interpretation of Some Postelectrolysis Nuclear Effects in Deuterated Titanium. Fusion Science and Technology, 1996, 29, 390-397.	0.6	3
134	Influence of anodization time and current density on the photoluminescence of porous Nî—,Si. Thin Solid Films, 1996, 276, 212-215.	0.8	3
135	Hydrogen storage properties of Li–Mg–N–B–H/ZrCoH3 composite with different ball-milling atmospheres. Rare Metals, 2023, 42, 1036-1042.	3.6	3
136	Role of silicon and carbon on the structural and electrochemical properties of Si-Ni3.4Sn4-Al-C anodes for Li-ion batteries. Materials Today Communications, 2020, 23, 101160.	0.9	3
137	Hydrogen Storage by Titanium Based Sulfides: Nanoribbons (TiS3) and Nanoplates (TiS2). J of Electrical Engineering, 2015, 3, .	0.1	3
138	Impact of Surface Chemistry of Silicon Nanoparticles on the Structural and Electrochemical Properties of Si/Ni3.4Sn4 Composite Anode for Li-Ion Batteries. Nanomaterials, 2021, 11, 18.	1.9	3
139	Hydrides compounds for electrochemical applications. Current Opinion in Electrochemistry, 2022, 32, 100921.	2.5	3
140	The influence of tungsten substrates on hydrogen absorption by iodide titanium films. Journal of Alloys and Compounds, 1995, 231, 798-803.	2.8	2
141	Experimental Investigation of Neutron Emissions during Thermal Cycling of TiD _{<i>x</i>} (<i>x</i> â‰^ 2.00). Fusion Science and Technology, 1997, 31, 237-247.	0.6	2
142	The behaviour of highly over-stoichiometric LaNi5Mn2alloy as negative electrode for Ni/MH batteries. Journal of Materials Science, 2004, 39, 5263-5266.	1.7	2
143	H/D Isotope Effects in LaNi[sub 4.5]Mn[sub 0.5] Electrodes. Journal of the Electrochemical Society, 2007, 154, A507.	1.3	2
144	Superior effect of Ni-substitution on the hydrogenation kinetics of Mg6Pd1â^'TM (TM = Ag, Cu, Ni) pseudo-binary compounds. Journal of Alloys and Compounds, 2015, 645, S334-S337.	2.8	2

FERMIN CUEVAS

#	Article	IF	CITATIONS
145	A Search for Nuclear Reactions in Deuterated Fresh Iodide-Titanium Films. Fusion Science and Technology, 1997, 32, 644-654.	0.6	1
146	Monitoring of iodide titanium growth on tungsten substrates by electrical resistance measurements. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 54, 141-148.	1.7	1
147	Anomalous X-Ray Diffraction in Electrolytically Deuterated Titanium*. Zeitschrift Fur Physikalische Chemie, 1993, 181, 329-334.	1.4	0
148	In situ measurement of the rate of H absorption by a Pd cathode during the electrolysis of aqueous solutions. Review of Scientific Instruments, 1997, 68, 1324-1330.	0.6	0
149	The coercivity of the melt-spun Sm-Fe-Ga-C permanent magnets and the effect of additives (Nb, Cu and) Tj ETQq1	1,0,7843 0.7	14 rgBT /Ov
150	Thermodynamic properties of AB compounds. , 2018, , 52-66.		0
151	Electrochemical properties of AB compounds. , 2018, , 67-70.		0
152	Synthesis and crystal structure of alkali alanates. , 2018, , 252-260.		0
153	Synthesis and crystal structure of mixed alkali alanates. , 2018, , 261-264.		0
154	Overview of AB-type metal hydrides. , 2018, , 71-72.		0