Yanmin Zhu

List of Publications by Citations

Source: https://exaly.com/author-pdf/672861/yanmin-zhu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

224 papers

3,662 citations

31 h-index 52 g-index

269 ext. papers

4,531 ext. citations

3.4 avg, IF

5.91 L-index

#	Paper	IF	Citations
224	TRAC: Truthful auction for location-aware collaborative sensing in mobile crowdsourcing 2014,		245
223	CDC: Compressive Data Collection for Wireless Sensor Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2015 , 26, 2188-2197	3.7	198
222	Recognizing Exponential Inter-Contact Time in VANETs 2010,		152
221	A Survey on Trajectory Data Mining: Techniques and Applications. <i>IEEE Access</i> , 2016 , 4, 2056-2067	3.5	138
220	A Compressive Sensing Approach to Urban Traffic Estimation with Probe Vehicles. <i>IEEE Transactions on Mobile Computing</i> , 2013 , 12, 2289-2302	4.6	115
219	Diagnosing New York city's noises with ubiquitous data 2014 ,		104
218	Toward Secure Multikeyword Top-k Retrieval over Encrypted Cloud Data. <i>IEEE Transactions on Dependable and Secure Computing</i> , 2013 , 10, 239-250	3.9	87
217	Mining large-scale, sparse GPS traces for map inference 2012 ,		76
216	Compressive Sensing Approach to Urban Traffic Sensing 2011 ,		75
215	Impact of Traffic Influxes: Revealing Exponential Intercontact Time in Urban VANETs. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2011 , 22, 1258-1266	3.7	67
214	ZOOM: Scaling the mobility for fast opportunistic forwarding in vehicular networks 2013,		61
213	Predicting Multi-step Citywide Passenger Demands Using Attention-based Neural Networks 2018,		60
212	Fine-Grained Abnormal Driving Behaviors Detection and Identification with Smartphones. <i>IEEE Transactions on Mobile Computing</i> , 2017 , 16, 2198-2212	4.6	60
211	SenSpeed: Sensing Driving Conditions to Estimate Vehicle Speed in Urban Environments. <i>IEEE Transactions on Mobile Computing</i> , 2016 , 15, 202-216	4.6	56
210	SenSpeed: Sensing driving conditions to estimate vehicle speed in urban environments 2014 ,		52
209	A Reliability-Oriented Transmission Service in Wireless Sensor Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2011 , 22, 2100-2107	3.7	49
208	Truthful online double auctions for dynamic mobile crowdsourcing 2015,		48

(2017-2014)

207	Trajectory Improves Data Delivery in Urban Vehicular Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 1089-1100	3.7	47
206	Infrastructure-assisted routing in vehicular networks 2012 ,		46
205	A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing. <i>Multimedia Tools and Applications</i> , 2021 , 80, 31401-31433	2.5	46
204	Trajectory improves data delivery in vehicular networks 2011 ,		45
203	. IEEE Transactions on Parallel and Distributed Systems, 2016 , 27, 1770-1782	3.7	43
202	. IEEE Transactions on Parallel and Distributed Systems, 2008 , 19, 903-913	3.7	39
201	Fast Viterbi map matching with tunable weight functions 2012,		38
200	2018,		37
199	When 3G Meets VANET: 3G-Assisted Data Delivery in VANETs. IEEE Sensors Journal, 2013, 13, 3575-358	844	35
198	A Double Auction Mechanism to Bridge Users Task Requirements and Providers Resources in Two-Sided Cloud Markets. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2018 , 29, 720-733	3.7	34
197	CrowdAtlas 2013 ,		34
196	Compressive sensing based monitoring with vehicular networks 2013,		33
195	Pothole in the Dark: Perceiving Pothole Profiles with Participatory Urban Vehicles. <i>IEEE Transactions on Mobile Computing</i> , 2017 , 16, 1408-1419	4.6	32
194	Lip Reading-Based User Authentication Through Acoustic Sensing on Smartphones. <i>IEEE/ACM Transactions on Networking</i> , 2019 , 27, 447-460	3.8	31
193	D3: Abnormal driving behaviors detection and identification using smartphone sensors 2015,		31
192	Exploiting Trajectory-Based Coverage for Geocast in Vehicular Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2014 , 25, 3177-3189	3.7	30
191	HMVFS: A Versioning File System on DRAM/NVM Hybrid Memory. <i>Journal of Parallel and Distributed Computing</i> , 2018 , 120, 355-368	4.4	30
190	Crowdsourcing Sensing to Smartphones: A Randomized Auction Approach. <i>IEEE Transactions on Mobile Computing</i> , 2017 , 16, 2764-2777	4.6	29

189	LipPass: Lip Reading-based User Authentication on Smartphones Leveraging Acoustic Signals 2018,		29
188	TMC: Exploiting Trajectories for Multicast in Sparse Vehicular Networks. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2015 , 26, 262-271	3.7	27
187	2014,		27
186	Sensing Human-Screen Interaction for Energy-Efficient Frame Rate Adaptation on Smartphones. <i>IEEE Transactions on Mobile Computing</i> , 2015 , 14, 1698-1711	4.6	26
185	A lightweight policy system for body sensor networks. <i>IEEE Transactions on Network and Service Management</i> , 2009 , 6, 137-148	4.8	26
184	. IEEE Transactions on Mobile Computing, 2021 , 20, 337-351	4.6	26
183	On Maximizing Delay-Constrained Coverage of Urban Vehicular Networks. <i>IEEE Journal on Selected Areas in Communications</i> , 2012 , 30, 804-817	14.2	25
182	HERO: Online Real-Time Vehicle Tracking. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2009 , 20, 740-752	3.7	25
181	Exploiting dynamic spatio-temporal graph convolutional neural networks for citywide traffic flows prediction. <i>Neural Networks</i> , 2022 , 145, 233-247	9.1	25
180	An Empirical Study on Urban IEEE 802.11p Vehicle-to-Vehicle Communication 2016 ,		24
180 179	An Empirical Study on Urban IEEE 802.11p Vehicle-to-Vehicle Communication 2016 , SMOPAT: Mining semantic mobility patterns from trajectories of private vehicles. <i>Information Sciences</i> , 2018 , 429, 12-25	7.7	24
	SMOPAT: Mining semantic mobility patterns from trajectories of private vehicles. <i>Information</i>	7·7 4.6	
179	SMOPAT: Mining semantic mobility patterns from trajectories of private vehicles. <i>Information Sciences</i> , 2018 , 429, 12-25 Leveraging Audio Signals for Early Recognition of Inattentive Driving with Smartphones. <i>IEEE</i>		22
179 178	SMOPAT: Mining semantic mobility patterns from trajectories of private vehicles. <i>Information Sciences</i> , 2018 , 429, 12-25 Leveraging Audio Signals for Early Recognition of Inattentive Driving with Smartphones. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1553-1567		22
179 178 177	SMOPAT: Mining semantic mobility patterns from trajectories of private vehicles. <i>Information Sciences</i> , 2018 , 429, 12-25 Leveraging Audio Signals for Early Recognition of Inattentive Driving with Smartphones. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1553-1567 Real-time hand gesture recognition with Kinect for playing racing video games 2014 , Mobility increases the surface coverage of distributed sensor networks. <i>Computer Networks</i> , 2013 ,	4.6	22 20 20
179 178 177	SMOPAT: Mining semantic mobility patterns from trajectories of private vehicles. <i>Information Sciences</i> , 2018 , 429, 12-25 Leveraging Audio Signals for Early Recognition of Inattentive Driving with Smartphones. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1553-1567 Real-time hand gesture recognition with Kinect for playing racing video games 2014 , Mobility increases the surface coverage of distributed sensor networks. <i>Computer Networks</i> , 2013 , 57, 2348-2363	4.6 5.4	22 20 20 19
179 178 177 176	SMOPAT: Mining semantic mobility patterns from trajectories of private vehicles. <i>Information Sciences</i> , 2018 , 429, 12-25 Leveraging Audio Signals for Early Recognition of Inattentive Driving with Smartphones. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1553-1567 Real-time hand gesture recognition with Kinect for playing racing video games 2014 , Mobility increases the surface coverage of distributed sensor networks. <i>Computer Networks</i> , 2013 , 57, 2348-2363 Inferring Dockless Shared Bike Distribution in New Cities 2018 ,	4.6 5.4	22 20 20 19

171	L3: Sensing driving conditions for vehicle lane-level localization on highways 2016 ,		17
170	REIN: A fast event matching approach for content-based publish/subscribe systems 2014,		17
169	META: A Mobility Model of MEtropolitan TAxis Extracted from GPS Traces 2010,		17
168	A Mixed Transmission Strategy to Achieve Energy Balancing in Wireless Sensor Networks. <i>IEEE Transactions on Wireless Communications</i> , 2017 , 16, 2111-2122	9.6	16
167	\$ALC^{2}\$: When Active Learning Meets Compressive Crowdsensing for Urban Air Pollution Monitoring. <i>IEEE Internet of Things Journal</i> , 2019 , 6, 9427-9438	10.7	16
166	When data contributors meet multiple crowdsourcers: Bilateral competition in mobile crowdsourcing. <i>Computer Networks</i> , 2016 , 95, 1-14	5.4	16
165	Towards Truthful Mechanisms for Mobile Crowdsourcing with Dynamic Smartphones 2014,		16
164	Energy-efficient scheduling on multi-FPGA reconfigurable systems. <i>Microprocessors and Microsystems</i> , 2013 , 37, 590-600	2.4	16
163	ER: Early recognition of inattentive driving leveraging audio devices on smartphones 2017,		15
162	Heterogeneous Task Allocation in Participatory Sensing 2015 ,		15
162 161	Heterogeneous Task Allocation in Participatory Sensing 2015 , SECO: Secure and scalable data collaboration services in cloud computing. <i>Computers and Security</i> , 2015 , 50, 91-105	4.9	15 15
	SECO: Secure and scalable data collaboration services in cloud computing. <i>Computers and Security</i> ,	4.9	15
161	SECO: Secure and scalable data collaboration services in cloud computing. <i>Computers and Security</i> , 2015 , 50, 91-105 Delay-Constrained Data Aggregation in VANETs. <i>IEEE Transactions on Vehicular Technology</i> , 2015 ,		15
161 160	SECO: Secure and scalable data collaboration services in cloud computing. <i>Computers and Security</i> , 2015 , 50, 91-105 Delay-Constrained Data Aggregation in VANETs. <i>IEEE Transactions on Vehicular Technology</i> , 2015 , 64, 2097-2107 Leveraging Smartphones for Vehicle Lane-Level Localization on Highways. <i>IEEE Transactions on</i>	6.8	15
161 160 159	SECO: Secure and scalable data collaboration services in cloud computing. <i>Computers and Security</i> , 2015 , 50, 91-105 Delay-Constrained Data Aggregation in VANETs. <i>IEEE Transactions on Vehicular Technology</i> , 2015 , 64, 2097-2107 Leveraging Smartphones for Vehicle Lane-Level Localization on Highways. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1894-1907 Distributed Social Welfare Maximization in Urban Vehicular Participatory Sensing Systems. <i>IEEE</i>	6.8 4.6	15 14 14
161 160 159	SECO: Secure and scalable data collaboration services in cloud computing. <i>Computers and Security</i> , 2015 , 50, 91-105 Delay-Constrained Data Aggregation in VANETs. <i>IEEE Transactions on Vehicular Technology</i> , 2015 , 64, 2097-2107 Leveraging Smartphones for Vehicle Lane-Level Localization on Highways. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1894-1907 Distributed Social Welfare Maximization in Urban Vehicular Participatory Sensing Systems. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1314-1325 Stochastic Optimal Control for Participatory Sensing Systems with Heterogenous Requests. <i>IEEE</i>	6.8 4.6 4.6	15 14 14 14
161 160 159 158	SECO: Secure and scalable data collaboration services in cloud computing. <i>Computers and Security</i> , 2015 , 50, 91-105 Delay-Constrained Data Aggregation in VANETs. <i>IEEE Transactions on Vehicular Technology</i> , 2015 , 64, 2097-2107 Leveraging Smartphones for Vehicle Lane-Level Localization on Highways. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1894-1907 Distributed Social Welfare Maximization in Urban Vehicular Participatory Sensing Systems. <i>IEEE Transactions on Mobile Computing</i> , 2018 , 17, 1314-1325 Stochastic Optimal Control for Participatory Sensing Systems with Heterogenous Requests. <i>IEEE Transactions on Computers</i> , 2016 , 65, 1619-1631 Energy-Efficient Identification in Large-Scale RFID Systems with Handheld Reader. <i>IEEE</i>	6.8 4.6 4.6	15 14 14 14 14

153	Where Will Dockless Shared Bikes be Stacked? 2018 ,		13
152	A secure collaboration service for dynamic virtual organizations. <i>Information Sciences</i> , 2010 , 180, 3086-3	1,07	13
151	Online Computation Offloading and Resource Scheduling in Mobile-Edge Computing. <i>IEEE Internet of Things Journal</i> , 2021 , 8, 6649-6664	10.7	13
150	Geographic routing based on predictive locations in vehicular ad hoc networks. <i>Eurasip Journal on Wireless Communications and Networking</i> , 2014 , 2014,	3.2	12
149	Profit-Maximizing Stochastic Control for Mobile Crowd Sensing Platforms 2014 ,		12
148	ANTS: Efficient Vehicle Locating Based on Ant Search in ShanghaiGrid. <i>IEEE Transactions on Vehicular Technology</i> , 2009 , 58, 4088-4097	6.8	12
147	Smart recommendation by mining large-scale GPS traces 2012 ,		12
146	An Energy-Efficient K-Hop Clustering Framework for Wireless Sensor Networks 2007 , 17-33		12
145	Truthful incentive mechanisms for mobile crowd sensing with dynamic smartphones. <i>Computer Networks</i> , 2018 , 141, 1-16	5.4	12
144	KeyListener: Inferring Keystrokes on QWERTY Keyboard of Touch Screen through Acoustic Signals 2019 ,		11
143	Optimizing event detection in low duty-cycled sensor networks. Wireless Networks, 2012 , 18, 241-255	2.5	11
142	CCR: Capacity-constrained replication for data delivery in vehicular networks 2013,		11
141	Incentive Design for Air Pollution Monitoring Based on Compressive Crowdsensing 2016,		11
140	SteerTrack: Acoustic-Based Device-Free Steering Tracking Leveraging Smartphones 2018 ,		10
139	Fair Energy-Efficient Sensing Task Allocation in Participatory Sensing with Smartphones. <i>Computer Journal</i> , 2017 , 60, 850-865	1.3	10
138	Online auction for IaaS clouds: Towards elastic user demands and weighted heterogeneous VMs 2017 ,		10
137	Application of RPC Model in Orthorectification of Spaceborne SAR Imagery. <i>Photogrammetric Record</i> , 2012 , 27, 94-110	1.7	10
136	. IEEE Transactions on Parallel and Distributed Systems, 2016 , 27, 1199-1211	3.7	9

135	Towards privacy-preserving data trading for web browsing history 2019 ,		9	
134	Utility-maximizing data collection in crowd sensing: An optimal scheduling approach 2015,		9	
133	Semantic Sensor Net: an extensible framework. <i>International Journal of Ad Hoc and Ubiquitous Computing</i> , 2009 , 4, 157	0.7	9	
132	Urban noise mapping with a crowd sensing system. Wireless Networks, 2019, 25, 2351-2364	2.5	9	
131	Forecasting Wavelet Transformed Time Series with Attentive Neural Networks 2018,		9	
130	A truthful incentive mechanism for mobile crowd sensing with location-Sensitive weighted tasks. <i>Computer Networks</i> , 2018 , 132, 1-14	5.4	8	
129	Group Buying Based Incentive Mechanism for Mobile Crowd Sensing 2016,		8	
128	On deploying relays for connected indoor sensor networks. <i>Journal of Communications and Networks</i> , 2014 , 16, 335-343	4.1	8	
127	Exploiting mobility patterns for inter-technology handover in mobile environments. <i>Computer Communications</i> , 2013 , 36, 203-210	5.1	8	
126	Mobile barrier coverage for dynamic objects in wireless sensor networks 2012 ,		8	
125	NoiseSense: A Crowd Sensing System for Urban Noise Mapping Service 2016 ,		8	
124	TGBA: A two-phase group buying based auction mechanism for recruiting workers in mobile crowd sensing. <i>Computer Networks</i> , 2019 , 149, 56-75	5.4	8	
123	A Truthful Online Auction for Tempo-spatial Crowdsourcing Tasks 2015,		7	
122	SPRCA: Distributed Multisource Information Propagation in Multichannel VANETs. <i>IEEE Transactions on Vehicular Technology</i> , 2017 , 66, 11306-11316	6.8	7	
121	Sensing processes participation game of smartphones in participatory sensing systems 2014,		7	
120	ROST: Remote and hot service deployment with trustworthiness in CROWN Grid. <i>Future Generation Computer Systems</i> , 2007 , 23, 825-835	7.5	7	
119	Improving Throughput and Fairness of Convergecast in Vehicular Networks. <i>IEEE Transactions on Mobile Computing</i> , 2017 , 16, 3070-3083	4.6	6	
118	Mining Large-Scale GPS Streams for Connectivity Refinement of Road Maps. <i>Computer Journal</i> , 2015 , 58, 2109-2119	1.3	6	

117	A sociality-aware approach to computing backbone in mobile opportunistic networks. <i>Ad Hoc Networks</i> , 2015 , 24, 46-56	4.8	6
116	Online Auction for IaaS Clouds: Towards Elastic User Demands and Weighted Heterogeneous VMs. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2018 , 29, 2075-2089	3.7	6
115	PhSIH 2019 ,		6
114	An evaluation of vehicular networks with real vehicular GPS traces. Eurasip Journal on Wireless Communications and Networking, 2013, 2013,	3.2	6
113	Customer Satisfaction-Aware Scheduling for Utility Maximization on Geo-distributed Cloud Data Centers 2013 ,		6
112	Crowdsourcing Sensing Workloads of Heterogeneous Tasks: A Distributed Fairness-Aware Approach 2015 ,		6
111	Correlating mobility with social encounters: Distributed localization in sparse mobile networks 2012 ,		6
110	A Frequency-Aware Spatio-Temporal Network for Traffic Flow Prediction. <i>Lecture Notes in Computer Science</i> , 2019 , 697-712	0.9	5
109	STL: Online Detection of Taxi Trajectory Anomaly Based on Spatial-Temporal Laws. <i>Lecture Notes in Computer Science</i> , 2019 , 764-779	0.9	5
108	Correlating mobility with social encounters: distributed localization in sparse mobile networks. <i>Wireless Networks</i> , 2015 , 21, 201-215	2.5	5
107	Load balance vs utility maximization in mobile crowd sensing: A distributed approach 2014,		5
106	On efficient neighbor sensing in vehicular networks. <i>Computer Communications</i> , 2012 , 35, 1639-1648	5.1	5
105	Optimal anti-jamming strategy in sensor networks 2012 ,		5
104	China's national research project on wireless sensor networks. <i>IEEE Wireless Communications</i> , 2007 , 14, 78-83	13.4	5
103	S-Club: an overlay-based efficient service discovery mechanism in CROWN Grid. <i>Knowledge and Information Systems</i> , 2007 , 12, 55-75	2.4	5
102	Towards Correlated Queries on Trading of Private Web Browsing History 2020 ,		5
101	When remote sensing data meet ubiquitous urban data: Fine-grained air quality inference 2016,		5
100	A Hybrid Approach Based on Collaborative Filtering to Recommending Mobile Apps 2016 ,		5

(2018-2016)

99	An Energy Efficient Algorithm for Virtual Machine Allocation in Cloud Datacenters. <i>Communications in Computer and Information Science</i> , 2016 , 61-72	0.3	5	
98	Incorporating Interpretability into Latent Factor Models via Fast Influence Analysis 2019,		4	
97	I3 2019 , 3, 1-22		4	
96	Mitigate the Obstructing Effect of Vehicles on the Propagation of VANETs Safety-Related Information. <i>IEEE Transactions on Vehicular Technology</i> , 2018 , 67, 5558-5569	6.8	4	
95	Accurate and Low-cost Mobile Indoor Localization with 2-D Magnetic Fingerprints 2017,		4	
94	LibreKV: A Persistent in-Memory Key-Value Store. <i>IEEE Transactions on Emerging Topics in Computing</i> , 2017 , 1-1	4.1	4	
93	Optimal Relay Placement for Indoor Sensor Networks 2012 ,		4	
92	On adaptive routing in urban vehicular networks 2012 ,		4	
91	MO-Tree: An Efficient Forwarding Engine for Spatiotemporal-Aware Pub/Sub Systems. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2021 , 32, 855-866	3.7	4	
90	Behavior Dynamics of Multiple Crowdsourcers in Mobile Crowdsourcing Markets. <i>IEEE Network</i> , 2016 , 30, 92-96	11.4	4	
89	Online cost-rejection rate scheduling for resource requests in hybrid clouds. <i>Parallel Computing</i> , 2019 , 81, 85-103	1	4	
88	A fast and anti-matchability matching algorithm for content-based publish/subscribe systems. <i>Computer Networks</i> , 2019 , 149, 213-225	5.4	4	
87	GAT: A Unified GPU-Accelerated Framework for Processing Batch Trajectory Queries. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2020 , 32, 92-107	4.2	4	
86	Leveraging Acoustic Signals for Vehicle Steering Tracking with Smartphones. <i>IEEE Transactions on Mobile Computing</i> , 2020 , 19, 865-879	4.6	4	
85	VPad: Virtual Writing Tablet for Laptops Leveraging Acoustic Signals 2018,		4	
84	A GPU-Accelerated Framework for Processing Trajectory Queries 2018,		4	
83	Early Experience of Remote and Hot Service Deployment with Trustworthiness in CROWN Grid. <i>Lecture Notes in Computer Science</i> , 2005 , 301-312	0.9	4	
82	Location Privacy-Preserving Method for Auction-Based Incentive Mechanisms in Mobile Crowd Sensing. <i>Computer Journal</i> , 2018 , 61, 937-948	1.3	3	

81	A probabilistic approach to statistical QoS provision of event detection in sensor networks. <i>Wireless Networks</i> , 2016 , 22, 439-451	2.5	3
80	Multi-Level Attention Networks for Multi-Step Citywide Passenger Demands Prediction. <i>IEEE Transactions on Knowledge and Data Engineering</i> , 2019 , 1-1	4.2	3
79	Compressive detection and localization of multiple heterogeneous events in sensor networks. <i>Ad Hoc Networks</i> , 2017 , 65, 65-77	4.8	3
78	Quality of Information (QoI)-aware cooperative sensing in vehicular sensor networks 2017,		3
77	Customer satisfaction-aware scheduling for utility maximization on geo-distributed data centers. <i>Concurrency Computation Practice and Experience</i> , 2015 , 27, 1334-1354	1.4	3
76	Crowdsourcing sensing to smartphones: A randomized auction approach 2015,		3
75	HiHeading: Smartphone-Based Indoor Map Construction System with High Accuracy Heading Inference 2015 ,		3
74	iCal: Intervention-free Calibration for Measuring Noise with Smartphones 2015,		3
73	Distributed Spectrum Sharing in Cognitive Radio Networks: A Pricing-Based Decomposition Approach. <i>International Journal of Distributed Sensor Networks</i> , 2014 , 10, 262137	1.7	3
72	Differentiating Your Friends for Scaling Online Social Networks 2012 ,		3
71	Coverage-aware Geocast Routing in Urban Vehicular Networks 2012,		3
70	Pervasive Urban Sensing with Large-Scale Mobile Probe Vehicles. <i>International Journal of Distributed Sensor Networks</i> , 2013 , 9, 762503	1.7	3
69	Vision Based Hand Gesture Recognition 2013 ,		3
68	Augmenting vehicular 3G users through inter-vehicle communications 2013,		3
67	Optimal Mobility-Aware Handoff in Mobile Environments 2011,		3
66	On Optimal Relay Placement for Urban Vehicular Networks 2011 ,		3
65	WiBee: Building WiFi radio map with ZigBee sensor networks 2012 ,		3
64	3G-assisted routing in vehicular networks 2012 ,		3

63	Finger: An efficient policy system for body sensor networks 2008,		3
62	Incentive-based scheduling in Grid computing. <i>Concurrency Computation Practice and Experience</i> , 2006 , 18, 1729-1746	1.4	3
61	A Reliability-oriented Transmission Service in Wireless Sensor Networks 2007,		3
60	Stimulus-based adaptive sleeping for wireless sensor networks 2005 ,		3
59	Incentive-Based P2P Scheduling in Grid Computing. Lecture Notes in Computer Science, 2004, 209-216	0.9	3
58	Uncovering Value of Correlated Data: Trading Data based on Iterative Combinatorial Auction 2021,		3
57	Learning from multiple dynamic graphs of student and course interactions for student grade predictions. <i>Neurocomputing</i> , 2021 , 431, 23-33	5.4	3
56	Cost-efficient VM configuration algorithm in the cloud using mix scaling strategy 2017,		2
55	SmartCut: Mitigating 3G Radio Tail Effect on Smartphones. <i>IEEE Transactions on Mobile Computing</i> , 2015 , 14, 169-179	4.6	2
54	A new harmony search based allocation algorithm for location dependent tasks in crowdsensing 2016 ,		2
53	Fine-Grained Air Quality Inference with Remote Sensing Data and Ubiquitous Urban Data. <i>ACM Transactions on Knowledge Discovery From Data</i> , 2019 , 13, 1-27	4	2
52	Compressive detection and localization of multiple heterogeneous events with sensor networks 2014 ,		2
51	SEED: solar energy-aware efficient scheduling for data centers. <i>Concurrency Computation Practice and Experience</i> , 2014 , 26, 2811-2835	1.4	2
50	Mitigate the obstructing effect of vehicles on the propagation of VANETs safety-related information 2017 ,		2
49	Online Pricing for Efficient Renewable Energy Sharing in a Sustainable Microgrid. <i>Computer Journal</i> , 2017 ,	1.3	2
48	NoiseCo: Smartphone-based noise collection and correction 2015,		2
47	EveryoneCounts: Data-driven digital advertising with uncertain demand model in metro networks 2015 ,		2
46	Harnessing Vehicle-to-Vehicle Communications for 3G Downloads on the Move. <i>International Journal of Distributed Sensor Networks</i> , 2014 , 10, 657905	1.7	2

45	Distributed compressive data gathering in low duty cycled wireless sensor networks 2014,		2
44	Optimal Adaptive Antijamming in Wireless Sensor Networks. <i>International Journal of Distributed Sensor Networks</i> , 2012 , 8, 485345	1.7	2
43	Practical location-based routing in vehicular ad hoc networks 2009,		2
42	EMP: Exploiting Mobility Patterns for Collaborative Localization in Sparse Mobile Networks. <i>International Journal of Distributed Sensor Networks</i> , 2014 , 10, 370364	1.7	2
41	Jointly Modeling Heterogeneous Student Behaviors and Interactions among Multiple Prediction Tasks. <i>ACM Transactions on Knowledge Discovery From Data</i> , 2021 , 16, 1-24	4	2
40	An Unsupervised Incremental Virtual Learning Method for Financial Fraud Detection 2019,		2
39	Online task dispatching and pricing for quality-of-service-aware sensing data collection for mobile edge clouds. <i>CCF Transactions on Networking</i> , 2019 , 2, 28-42	0.8	2
38	Data-Driven Digital Advertising with Uncertain Demand Model in Metro Networks. <i>IEEE Transactions on Big Data</i> , 2021 , 7, 313-326	3.2	2
37	A Near-Optimal Approach for Online Task Offloading and Resource Allocation in Edge-Cloud Orchestrated Computing. <i>IEEE Transactions on Mobile Computing</i> , 2021 , 1-1	4.6	2
36	Detecting Taxi Trajectory Anomaly Based on Spatio-Temporal Relations. <i>IEEE Transactions on Intelligent Transportation Systems</i> , 2021 , 1-12	6.1	2
35	Modeling Conceptual Characteristics of Virtual Machines for CPU Utilization Prediction. <i>Lecture Notes in Computer Science</i> , 2018 , 319-333	0.9	2
34	Online Pricing and Trading of Private Data in Correlated Queries. <i>IEEE Transactions on Parallel and Distributed Systems</i> , 2022 , 33, 569-585	3.7	2
33	Modeling Air Travel Choice Behavior with Mixed Kernel Density Estimations 2017,		1
32	Enable Traditional Laptops with Virtual Writing Capability Leveraging Acoustic Signals. <i>Computer Journal</i> , 2020 ,	1.3	1
31	HMFS: A hybrid in-memory file system with version consistency. <i>Journal of Parallel and Distributed Computing</i> , 2018 , 117, 18-36	4.4	1
30	Study on the Nb3Sn Rutherford Cable for High-Energy Accelerators. <i>IEEE Transactions on Applied Superconductivity</i> , 2018 , 28, 1-4	1.8	1
29	Optimal Distributed Auction for Mobile Crowd Sensing. <i>Computer Journal</i> , 2018 , 61, 1443-1459	1.3	1
28	Cruising or Waiting: A Shared Recommender System for Taxi Drivers. <i>Lecture Notes in Computer Science</i> , 2018 , 418-430	0.9	1

27	On adaptive routing in urban vehicular networks. Wireless Networks, 2013, 19, 1995-2004	2.5	1
26	2017,		1
25	DEEL: Detecting elevation of urban roads with smartphones on wheels 2015,		1
24	An efficient distributed algorithm for spectrum allocation in multi-hop cognitive radio networks 2015 ,		1
23	A Unified Approach for Fast and Accurate Cardinality Estimation in RFID Systems 2014,		1
22	Exploiting Network Coding for Data Availability in Vehicular Networks: Issues and Opportunities 2012 ,		1
21	Statistically Bounding Detection Latency in Low-Duty-Cycled Sensor Networks. <i>International Journal of Distributed Sensor Networks</i> , 2012 , 8, 365421	1.7	1
20	On Guaranteed Detectability for Surveillance Sensor Networks. <i>International Journal of Distributed Sensor Networks</i> , 2012 , 8, 852027	1.7	1
19	On Providing Guaranteed Detectability for Surveillance Applications. <i>Parallel Processing (ICPP), Proceedings of the International Symposium</i> , 2007 ,		1
18	Deep Reinforcement Learning based Approach for Online Service Placement and Computation Resource Allocation in Edge Computing. <i>IEEE Transactions on Mobile Computing</i> , 2022 , 1-1	4.6	1
17	PLANT: A Distributed Architecture for Personalized E-Learning 2008, 20-30		1
16	Roda: A Flexible Framework for Real-Time On-demand Data Aggregation. <i>Lecture Notes in Computer Science</i> , 2020 , 587-602	0.9	1
15	Effective Palm Tracking with Integrated Tracker and Offline Detector. <i>Lecture Notes in Computer Science</i> , 2014 , 318-327	0.9	1
14	2016,		1
13	A distributed algorithm for maximizing utility of data collection in a crowd sensing system. <i>International Journal of Distributed Sensor Networks</i> , 2016 , 12, 155014771666808	1.7	1
12	Lap: A latency-aware parallelism framework for content-based publish/subscribe systems. <i>Concurrency Computation Practice and Experience</i> ,e6640	1.4	1
11	Optimized Controller Provisioning in Software-Defined LEO Satellite Networks. <i>IEEE Transactions on Mobile Computing</i> , 2022 , 1-1	4.6	1
10	A Profit-maximizing Mechanism for Query-based Data Trading with Personalized Differential Privacy. <i>Computer Journal</i> , 2021 , 64, 264-280	1.3	O

9	Characterizing sociality for user-friendly steady load balancing in enterprise WLANs. <i>IEEE Network</i> , 2015 , 29, 26-32	11.4
8	On efficient replication-based routing in vehicular networks. <i>Journal of High Speed Networks</i> , 2014 , 20, 29-40	0.4
7	On Optimal Antijamming Strategies in Sensor Networks. <i>International Journal of Distributed Sensor Networks</i> , 2012 , 8, 793194	1.7
6	A Multi-agents Contractual Approach to Incentive Provision in Non-cooperative Networks. <i>Lecture Notes in Computer Science</i> , 2008 , 231-248	0.9
5	A Multi-task Learning Framework for Automatic Early Detection of Alzheimer <i>Lecture Notes in Computer Science</i> , 2019 , 240-243	0.9
4	SCMKV: A Lightweight Log-Structured Key-Value Store on SCM. <i>Lecture Notes in Computer Science</i> , 2017 , 1-12	0.9
3	Partial-PreSET: Enhancing Lifetime of PCM-Based Main Memory with Fine-Grained SET Operations. <i>International Journal of Parallel Programming</i> , 2018 , 46, 736-748	1.5
2	Processing-While-Transmitting: Cost-Minimized Transmission in SDN-Based STINs. <i>IEEE/ACM Transactions on Networking</i> , 2021 , 1-14	3.8
1	Delay-Optimal Cooperation Transmission in Remote Sensing Satellite Networks. <i>IEEE Transactions on Mobile Computing</i> , 2022 , 1-1	4.6