Xiaolei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6728582/publications.pdf Version: 2024-02-01

XIAOLEL MANC

#	Article	IF	CITATIONS
1	Regulation and control of wet friction of soft materials using surface texturing: A review. Friction, 2023, 11, 333-353.	6.4	6
2	On the thermocapillary migration between parallel plates. International Journal of Heat and Mass Transfer, 2022, 182, 121962.	4.8	7
3	Ni/Si3N4 composite coatings and their water lubrication behaviors. Applied Surface Science, 2022, 572, 151534.	6.1	5
4	Droplets Impacting and Migrating on Structured Surfaces With Imposed Thermal Gradients. Journal of Tribology, 2022, 144, .	1.9	2
5	Ultraslippery/hydrophilic patterned surfaces for efficient fog harvest. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128398.	4.7	28
6	Solid particle erosion-wear behaviour of SiC particle-reinforced Si matrix composite and neat Si—A comparison. Wear, 2022, 496-497, 204286.	3.1	5
7	The supporting capacity of ferrofluids bearing: From the liquid ring to droplet. Journal of Magnetism and Magnetic Materials, 2022, 552, 169212.	2.3	3
8	Comparative Studies on Wet Attaching Abilities of Different Salamander Species. Journal of Bionic Engineering, 2022, 19, 92-102.	5.0	2
9	Improvement of process repeatability and resolution in abrasive air jet machining via viscous slurry entrainment. Journal of Manufacturing Processes, 2022, 79, 413-431.	5.9	3
10	Creation of Topological Ultraslippery Surfaces for Droplet Motion Control. ACS Nano, 2021, 15, 2589-2599.	14.6	93
11	Physical mechanisms behind the wet adhesion: From amphibian toe-pad to biomimetics. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111531.	5.0	14
12	Directional interfacial motion of liquids: Fundamentals, evaluations, and manipulation strategies. Tribology International, 2021, 154, 106749.	5.9	31
13	Supporting capacity of a ferrofluid ring bearing. Journal Physics D: Applied Physics, 2021, 54, 175004.	2.8	4
14	Semantic segmentation of ferrography images for automatic wear particle analysis. Engineering Failure Analysis, 2021, 122, 105268.	4.0	6
15	Characteristics of multiphase jet machining: A comparison with the absence of water. Journal of Materials Processing Technology, 2021, 291, 117050.	6.3	12
16	Ferrofluid-lubricated thrust bearing with an air cushion. Journal of Applied Physics, 2021, 130, .	2.5	3
17	Architecture-Driven Fast Droplet Transport without Mass Loss. Langmuir, 2021, 37, 12519-12528.	3.5	14
18	Efficient Bubble Transport on Bioinspired Topological Ultraslippery Surfaces. ACS Applied Materials & Interfaces, 2021, 13, 61780-61788.	8.0	16

#	Article	IF	CITATIONS
19	Using magnetic fluids to improve the behavior of ball bearings under starved lubrication. Tribology International, 2020, 141, 105950.	5.9	28
20	Synthesis of GO-Fe ₃ O ₄ -based ferrofluid and its lubrication performances. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234, 1160-1167.	1.8	9
21	Liquid–gas support and lubrication based on a ferrofluid seal. Journal Physics D: Applied Physics, 2020, 53, 025002.	2.8	8
22	Accuracy of the pattern transfer from the metal mask to the workpiece surface during multiphase jet machining. International Journal of Advanced Manufacturing Technology, 2020, 106, 1355-1364.	3.0	3
23	Ferrofluid lubrication for ball bearings to avoid starvation. Industrial Lubrication and Tribology, 2020, 72, 1227-1231.	1.3	1
24	Migration of Liquid Bridges at the Interface of Spheres and Plates with an Imposed Thermal Gradient. Langmuir, 2020, 36, 6268-6276.	3.5	5
25	Feasibility study of magnetic fluid support and lubrication behaviors on micro magnet arrays. Tribology International, 2020, 150, 106407.	5.9	6
26	Layer-based thermal migration of an ionic liquid nano-droplet on a graphene surface: a molecular dynamics study. Molecular Simulation, 2020, 46, 829-836.	2.0	3
27	Controlled support of a magnetic fluid at a superhydrophobic interface. Applied Physics Letters, 2020, 116, 221601.	3.3	7
28	Direct detection of wear conditions by classification of ferrograph images. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	8
29	Tapered mask and its effect on the fluid flow and machining efficiency of a multiphase jet. Journal of Manufacturing Processes, 2020, 50, 467-474.	5.9	3
30	Propelling liquids on superhydrophobic surfaces with superhydrophilic diverging grooves. Surface Innovations, 2020, 8, 158-164.	2.3	7
31	Experimental investigation of the effect of typical surface texture patterns on mechanical seal performance. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	8
32	Non-sticky and Non-slippery Biomimetic Patterned Surfaces. Journal of Bionic Engineering, 2020, 17, 326-334.	5.0	3
33	Investigations on the Thermocapillary Migration of Liquid Lubricants at Different Interfaces. Tribology Letters, 2020, 68, 1.	2.6	4
34	Non-sticky and Free-forward Performances of Grubs against Soil. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111006.	5.0	1
35	Water Lubrication of Ni/Al2O3 Composite Coatings Sliding With Si3N4. Journal of Tribology, 2020, 142, .	1.9	4
36	The thermocapillary migration on rough surfaces. Lubrication Science, 2019, 31, 163-170.	2.1	11

#	Article	IF	CITATIONS
37	On the Thermocapillary Migration at the Liquid and Solid Aspects. Journal of Tribology, 2019, 141, .	1.9	2
38	Manipulating thermocapillary migration via superoleophobic surfaces with wedge shaped superoleophilic grooves. Journal of Colloid and Interface Science, 2019, 557, 837-844.	9.4	13
39	On the Thermocapillary Migration on Radially Microgrooved Surfaces. Langmuir, 2019, 35, 9169-9176.	3.5	9
40	Experimental verification of textured mechanical seal designed using multi-objective optimization. Industrial Lubrication and Tribology, 2019, 71, 766-771.	1.3	10
41	Geometrical Shape Effects of Surface Texture on the Elastic Deformation in Soft-EHL Contacts. Tribology Transactions, 2019, 62, 592-602.	2.0	6
42	Magnetically stimulating capillary effect for reversible wet adhesions. Soft Matter, 2019, 15, 2817-2825.	2.7	5
43	Composite Ni/UHMWPE coatings and their tribological performances. Applied Surface Science, 2019, 481, 414-420.	6.1	13
44	Effects of bulk viscoelasticity and surface wetting on the contact and adhesive properties of a soft material. Polymer Testing, 2019, 74, 266-273.	4.8	5
45	Distribution effect of surface texture on the elastic deformation in soft contacts. Industrial Lubrication and Tribology, 2019, 71, 1194-1199.	1.3	1
46	Supporting and friction properties of magnetic fluids bearings. Tribology International, 2019, 130, 334-338.	5.9	17
47	Towards the intelligent analysis of ferrograph images. Mechanisms and Machine Science, 2019, , 3825-3834.	0.5	1
48	Key parameters of biomimetic patterned surface for wet adhesion. International Journal of Adhesion and Adhesives, 2018, 82, 72-78.	2.9	19
49	Multi-objective optimization on dimple shapes for gas face seals. Tribology International, 2018, 123, 216-223.	5.9	40
50	Controlling direct contact force for wet adhesion with different wedged film stabilities. Journal Physics D: Applied Physics, 2018, 51, 165305.	2.8	8
51	Effect of wetting case and softness on adhesion of bioinspired micropatterned surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 266-272.	3.1	23
52	Contact angle hysteresis effect on the thermocapillary migration of liquid droplets. Journal of Colloid and Interface Science, 2018, 515, 32-38.	9.4	25
53	Observation on the deformation of dimpled surface in soft-EHL contacts. Tribology International, 2018, 119, 521-530.	5.9	11
54	A Multi-Objective Optimization Approach on Spiral Grooves for Gas Mechanical Seals. Journal of Tribology, 2018, 140, .	1.9	12

#	Article	IF	CITATIONS
55	Ringlike Migration of a Droplet Propelled by an Omnidirectional Thermal Gradient. Langmuir, 2018, 34, 3806-3812.	3.5	21
56	A non-reference evaluation method for edge detection of wear particles in ferrograph images. Mechanical Systems and Signal Processing, 2018, 100, 863-876.	8.0	29
57	lonic liquids–based magnetic nanofluids as lubricants. Lubrication Science, 2018, 30, 73-82.	2.1	29
58	Surface texturing on SiC by multiphase jet machining with microdiamond abrasives. Materials and Manufacturing Processes, 2018, 33, 1415-1421.	4.7	18
59	Pillar versus dimple patterned surfaces for wettability and adhesion with varying scales. Journal of the Royal Society Interface, 2018, 15, 20180681.	3.4	7
60	Colloidal suspension of graphene oxide in ionic liquid as lubricant. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	15
61	Synthesis of magnetic Fe ₃ O ₄ /graphene oxide nanocomposites and their tribological properties under magnetic field. Materials Research Express, 2018, 5, 105006.	1.6	28
62	Preparation and tribological properties of graphene oxide doped alumina composite coatings. Surface and Coatings Technology, 2018, 352, 411-419.	4.8	24
63	Micro-grooves design to modify the thermo-capillary migration of paraffin oil. Meccanica, 2017, 52, 171-181.	2.0	18
64	On the migration of a droplet on an incline. Journal of Colloid and Interface Science, 2017, 494, 8-14.	9.4	13
65	Friction Reduction of Chrome-Coated Surface with Micro-Dimple Arrays Generated by Electrochemical Micromachining. Journal of Materials Engineering and Performance, 2017, 26, 667-675.	2.5	12
66	Advanced adhesion and friction measurement system. Measurement Science and Technology, 2017, 28, 035601.	2.6	10
67	Insights into the influence of additives on the thermal gradient induced migration of lubricant. Lubrication Science, 2017, 29, 17-29.	2.1	4
68	The load carrying capacity of textured sliding bearings with elastic deformation. Tribology International, 2017, 109, 86-96.	5.9	45
69	Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication. Wear, 2017, 380-381, 52-58.	3.1	74
70	Electrical Sliding Friction Lubricated with Ionic Liquids. Tribology Letters, 2017, 65, 1.	2.6	23
71	Elastic support of magnetic fluids bearing. Journal Physics D: Applied Physics, 2017, 50, 435004.	2.8	10
72	The thermal capillary migration properties and controlling technique of ferrofluids. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 1441-1449.	1.8	5

#	Article	IF	CITATIONS
73	The Wear Behavior of Textured Steel Sliding against Polymers. Materials, 2017, 10, 330.	2.9	17
74	Insights into the effect of thermocapillary migration of droplet on lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2016, 230, 583-590.	1.8	7
75	No migration of ionic liquid under temperature gradient. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 497, 167-170.	4.7	8
76	Thermocapillary Migration of Liquid Droplets Induced by a Unidirectional Thermal Gradient. Langmuir, 2016, 32, 7485-7492.	3.5	57
77	Sticking/climbing ability and morphology studies of the toe pads of Chinese fire belly newt. Journal of Bionic Engineering, 2016, 13, 115-123.	5.0	22
78	Ionic liquid lubrication at electrified interfaces. Journal Physics D: Applied Physics, 2016, 49, 225301.	2.8	21
79	Comparison of the Load-Carrying Performance of Mechanical Gas Seals Textured With Microgrooves and Microdimples. Journal of Tribology, 2016, 138, .	1.9	32
80	A multi-phase micro-abrasive jet machining technique for the surface texturing of mechanical seals. International Journal of Advanced Manufacturing Technology, 2016, 86, 2047-2054.	3.0	28
81	A Hybrid Method for the Segmentation of a Ferrograph Image Using Marker-Controlled Watershed and Grey Clustering. Tribology Transactions, 2016, 59, 513-521.	2.0	18
82	Controlling lubricant migration using ferrofluids. Tribology International, 2016, 93, 318-323.	5.9	12
83	Ferrofluids lubrication: a status report. Lubrication Science, 2016, 28, 3-26.	2.1	40
84	Design principles for the area density of dimple patterns. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229, 538-546.	1.8	49
85	Composition design of Ni–nano-Al2O3–PTFE coatings and their tribological characteristics. Surface and Coatings Technology, 2015, 282, 121-128.	4.8	43
86	Comparisons of Tribological Properties of Ti(C,N)/SiC in Water and Seawater. Journal of Tribology, 2015, 137, .	1.9	5
87	Bioinspired, peg-studded hexagonal patterns for wetting and friction. Biointerphases, 2015, 10, 031008.	1.6	25
88	A Surface Texture Design to Obstruct the Liquid Migration Induced by Omnidirectional Thermal Gradients. Langmuir, 2015, 31, 10154-10160.	3.5	23
89	An evaluation method for the segmentation of ferrograph image based on grey relational analysis. , 2014, , .		0
90	The segmentation of wear particles in ferrograph images based on an improved ant colony algorithm. Wear, 2014, 311, 123-129.	3.1	41

#	Article	IF	CITATIONS
91	Surface roughness and orientation effects on the thermo-capillary migration of a droplet of paraffin oil. Experimental Thermal and Fluid Science, 2014, 57, 200-206.	2.7	31
92	Effects of magnetic arrayed films on lubrication transition properties of magnetic fluid. Tribology International, 2014, 72, 172-178.	5.9	12
93	Dimple patterns design for different circumstances. Lubrication Science, 2013, 25, 67-78.	2.1	103
94	Preparing a high-particle-content Ni/diamond composite coating with strong abrasive ability. Surface and Coatings Technology, 2013, 235, 489-494.	4.8	40
95	Comparison of the effects of surface texture on the surfaces of steel and UHMWPE. Tribology International, 2013, 65, 138-145.	5.9	63
96	A wear particle identification method by combining principal component analysis and grey relational analysis. Wear, 2013, 304, 96-102.	3.1	59
97	Study on the frictional properties of micro-magnet arrayed surface lubricated with ferrofluids. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 406-412.	1.8	1
98	Biomimetic design of elastomer surface pattern for friction control under wet conditions. Bioinspiration and Biomimetics, 2013, 8, 046001.	2.9	72
99	Biomimetic surface design for ultrahigh molecular weight polyethylene to improve the tribological properties. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2012, 226, 705-713.	1.8	22
100	Micro-Magnetic Field Arrayed Surface for Ferrofluids Lubrication. Journal of Tribology, 2012, 134, .	1.9	9
101	Wettability and friction coefficient of micro-magnet arrayed surface. Applied Surface Science, 2012, 258, 3062-3067.	6.1	9
102	Study on the properties and stability of ionic liquid-based ferrofluids. Colloid and Polymer Science, 2012, 290, 1695-1702.	2.1	27
103	The lubricant retaining effect of micro-dimples on the sliding surface of PDMS. Tribology International, 2012, 52, 87-93.	5.9	84
104	Modify the friction between steel ball and PDMS disk underÂwater lubrication by surface texturing. Meccanica, 2011, 46, 499-507.	2.0	30
105	Study on the Ferrofluid Lubrication with an External Magnetic Field. Tribology Letters, 2011, 41, 145-151.	2.6	55
106	The tribological performance of Ti(C,N)-based cermet sliding against Si3N4 in water. Wear, 2011, 270, 682-687.	3.1	22
107	Orientation effects of micro-grooves on sliding surfaces. Tribology International, 2011, 44, 1047-1054.	5.9	173
108	Geometric Shape Effects of Surface Texture on the Generation of Hydrodynamic Pressure Between Conformal Contacting Surfaces. Tribology Letters, 2010, 37, 123-130.	2.6	286

#	Article	IF	CITATIONS
109	Tribological properties of a N _x coatings sliding against SiC balls in ethylene glycol aqueous solution. Lubrication Science, 2010, 22, 225-236.	2.1	5
110	Significance of Dimple Parameters on the Friction of Sliding Surfaces Investigated by Orthogonal Experiments. Tribology Transactions, 2010, 53, 703-712.	2.0	111
111	Surface roughness, mechanical properties and bonding structure of silicon carbon nitride films grown by dual ion beam sputtering. Journal of Alloys and Compounds, 2010, 492, 269-276.	5.5	30
112	Study on the Synthesis and Tribological Property of Fe3O4 Based Magnetic Fluids. Tribology Letters, 2009, 33, 187-192.	2.6	42
113	Influence of nitrogen ion implantation energies on surface chemical bonding structure and mechanical properties of nitrogen-implanted silicon carbide ceramics. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2858-2865.	1.4	6
114	Preliminary investigation of the effect of dimple size on friction in line contacts. Tribology International, 2009, 42, 1118-1123.	5.9	133
115	A novel surface texture for magnetic fluid lubrication. Surface and Coatings Technology, 2009, 204, 433-439.	4.8	41
116	Influence of nitrogen ion implantation fluences on surface structure and tribological properties of SiC ceramics in water-lubrication. Applied Surface Science, 2009, 255, 5079-5087.	6.1	30
117	Study on Static Supporting Capacity and Tribological Performance of Ferrofluids. Tribology Transactions, 2009, 52, 717-723.	2.0	24
118	Preparation and Properties of ε-Fe3N-Based Magnetic Fluid. Nanoscale Research Letters, 2008, 3, .	5.7	31
119	Influence of normal load and sliding speed on the tribological property of amorphous carbon nitride coatings sliding against Si3N4 balls in water. Surface and Coatings Technology, 2008, 202, 3519-3528.	4.8	53
120	The Effects of Dimple Size and Depth on Friction Reduction Under Boundary Lubrication Pressure. , 2007, , 909.		9
121	Friction and wear property of a-CNx coatings sliding against Si3N4 balls in water. Wear, 2007, 263, 1253-1258.	3.1	61
122	Optimization of the surface texture for silicon carbide sliding in water. Applied Surface Science, 2006, 253, 1282-1286.	6.1	214
123	The Critical Condition for the Transition from HL to ML in Water-Lubricated SiC. Tribology Letters, 2004, 16, 253-258.	2.6	27
124	Improving the Anti-seizure Ability of SiC Seal in Water with RIE Texturing. Tribology Letters, 2003, 14, 275-280.	2.6	156
125	Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribology International, 2003, 36, 189-197.	5.9	413
126	The Lubrication Effect of Micro-Pits on Parallel Sliding Faces of SiC in Water. Tribology Transactions, 2002, 45, 294-301.	2.0	97

0

#	Article	IF	CITATIONS
127	The effect of laser texturing of SiC surface on the critical load for the transition of water lubrication mode from hydrodynamic to mixed. Tribology International, 2001, 34, 703-711.	5.9	238

128 THE PHENOMENON OF THERMO-CAPILLARY MIGRATION EFFECTED BY SURFACE MICRO-GROOVE. , 0, , .