Min-Kyu Oh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/672809/publications.pdf Version: 2024-02-01

Мім-Куш Он

#	Article	IF	CITATIONS
1	Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Bioresource Technology, 2022, 344, 126307.	9.6	14
2	Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1. Bioresource Technology, 2022, 353, 127127.	9.6	13
3	Systems metabolic engineering of <i>Streptomyces venezuelae</i> for the enhanced production of pikromycin. Biotechnology and Bioengineering, 2022, 119, 2250-2260.	3.3	4
4	Production of Polyhydroxyalkanoates with the Fermentation of Methylorubrum extorquens Using Formate as a Carbon Substrate. Biotechnology and Bioprocess Engineering, 2022, 27, 268-275.	2.6	4
5	Enriching intracellular macrolides in Escherichia coli improved the sensitivity of bioluminescent sensing systems. Talanta, 2022, 249, 123626.	5.5	0
6	Improved production of 2,3â€butanediol and isobutanol by engineering electron transport chain in <i>Escherichia coli</i> . Microbial Biotechnology, 2021, 14, 213-226.	4.2	11
7	Improved Yield of Recombinant Protein via Flagella Regulator Deletion in Escherichia coli. Frontiers in Microbiology, 2021, 12, 655072.	3.5	4
8	Olfactory Detection of Toluene by Detection Rats for Potential Screening of Lung Cancer. Sensors, 2021, 21, 2967.	3.8	9
9	Metabolic engineering of Methylorubrum extorquens AM1 for poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production using formate. International Journal of Biological Macromolecules, 2021, 177, 284-293.	7.5	14
10	Multi-Odor Discrimination by Rat Sniffing for Potential Monitoring of Lung Cancer and Diabetes. Sensors, 2021, 21, 3696.	3.8	3
11	Optimizing protein V untranslated region sequence in M13 phage for increased production of single-stranded DNA for origami. Nucleic Acids Research, 2021, 49, 6596-6603.	14.5	7
12	Editorial: Technological Advances Improving Recombinant Protein Production in Bacteria. Frontiers in Microbiology, 2021, 12, 729472.	3.5	0
13	Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in <i>Streptomyces</i> genomes. Natural Product Reports, 2021, 38, 1330-1361.	10.3	35
14	Antibacterial properties of main-chain cationic polymers prepared through amine–epoxy â€~Click' polymerization. RSC Advances, 2020, 10, 26752-26755.	3.6	16
15	Asian Congress on Biotechnology 2019. Biotechnology Journal, 2020, 15, e2000214.	3.5	0
16	Investigating <i>E. coli</i> Coculture for Resveratrol Production with ¹³ C Metabolic Flux Analysis. Journal of Agricultural and Food Chemistry, 2020, 68, 3466-3473.	5.2	16
17	Two-stage bioconversion of carbon monoxide to biopolymers via formate as an intermediate. Chemical Engineering Journal, 2020, 389, 124394.	12.7	50
18	¹³ C Metabolic Flux Analysis of <i>Escherichia coli</i> Engineered for Gammaâ€Aminobutyrate Production. Biotechnology Journal, 2020, 15, e1900346.	3.5	14

#	Article	IF	CITATIONS
19	Improved 2,3-butanediol yield and productivity from lignocellulose biomass hydrolysate in metabolically engineered Enterobacter aerogenes. Bioresource Technology, 2020, 309, 123386.	9.6	18
20	Metabolic engineering of Corynebacterium glutamicum for the production of glutaric acid, a C5 dicarboxylic acid platform chemical. Metabolic Engineering, 2019, 51, 99-109.	7.0	50
21	Adaptively evolved Escherichia coli for improved ability of formate utilization as a carbon source in sugar-free conditions. Biotechnology for Biofuels, 2019, 12, 207.	6.2	41
22	Metabolic perturbations in mutants of glucose transporters and their applications in metabolite production in Escherichia coli. Microbial Cell Factories, 2019, 18, 170.	4.0	17
23	Artificial Caprolactam-Specific Riboswitch as an Intracellular Metabolite Sensor. ACS Synthetic Biology, 2019, 8, 1276-1283.	3.8	30
24	Complete Genome Sequence of Paenibacillus sp. CAA11: A Promising Microbial Host for Lignocellulosic Biorefinery with Consolidated Processing. Current Microbiology, 2019, 76, 732-737.	2.2	1
25	Protein kinase CK2-dependent aerobic glycolysis-induced lactate dehydrogenase A enhances the migration and invasion of cancer cells. Scientific Reports, 2019, 9, 5337.	3.3	21
26	Precise tuning of the glyoxylate cycle in Escherichia coli for efficient tyrosine production from acetate. Microbial Cell Factories, 2019, 18, 57.	4.0	25
27	Butyric acid production with high selectivity coupled with acetic acid consumption in sugar-glycerol mixture fermentation by Clostridium tyrobutyricum ATCC25755. Journal of Industrial and Engineering Chemistry, 2019, 75, 44-51.	5.8	16
28	Enhanced butyric acid production using mixed biomass of brown algae and rice straw by Clostridium tyrobutyricum ATCC25755. Bioresource Technology, 2019, 273, 446-453.	9.6	27
29	Effects of gltA and arcA Mutations on Biomass and 1,3-Propanediol Production in Klebsiella pneumoniae. Biotechnology and Bioprocess Engineering, 2019, 24, 95-102.	2.6	8
30	Combined effect of inorganic salts with calcium peroxide pretreatment for kenaf core biomass and their utilization for 2,3-butanediol production. Bioresource Technology, 2018, 258, 26-32.	9.6	24
31	Target-oriented photofunctional nanoparticles (TOPFNs) for selective photodynamic inactivation of Methicillin-resistant Staphylococcus aureus (MRSA). Journal of Photochemistry and Photobiology B: Biology, 2018, 183, 184-190.	3.8	14
32	Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes. Bioresource Technology, 2018, 259, 373-380.	9.6	19
33	Effect of various shaped magnesium hydroxide particles on mechanical and biological properties of poly(lactic- co -glycolic acid) composites. Journal of Industrial and Engineering Chemistry, 2018, 59, 266-276.	5.8	25
34	Combination of Three Methods to Reduce Glucose Metabolic Rate For Improving <i>N</i> -Acetylglucosamine Production in <i>Saccharomyces cerevisiae</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 13191-13198.	5.2	14
35	Balancing antimicrobial performance with hemocompatibility in amphiphilic homopolymers. Journal of Polymer Science Part A, 2018, 56, 2391-2396.	2.3	7
36	Applications and Advances in Bioelectronic Noses for Odour Sensing. Sensors, 2018, 18, 103.	3.8	61

#	Article	IF	CITATIONS
37	High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnology for Biofuels, 2018, 11, 104.	6.2	47
38	Comparison of metabolite profiling of Ralstonia eutropha H16 phaBCA mutants grown on different carbon sources. Korean Journal of Chemical Engineering, 2017, 34, 797-805.	2.7	5
39	Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process. Bioresource Technology, 2017, 245, 1692-1700.	9.6	45
40	Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate. Bioresource Technology, 2017, 245, 1567-1574.	9.6	37
41	Formate and Nitrate Utilization in <i>Enterobacter aerogenes</i> for Semiâ€Anaerobic Production of Isobutanol. Biotechnology Journal, 2017, 12, 1700121.	3.5	18
42	Pathway engineering of Enterobacter aerogenes to improve acetoin production by reducing by-products formation. Enzyme and Microbial Technology, 2017, 106, 114-118.	3.2	18
43	Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for <i>n</i> -Butanol Production in <i>Escherichia coli</i> . ACS Synthetic Biology, 2017, 6, 182-189.	3.8	51
44	Enhanced Production of Itaconic Acid through Development of Transformed Fungal Strains of Aspergillus terreus. Journal of Microbiology and Biotechnology, 2017, 27, 306-315.	2.1	15
45	Improved production of <i>N</i> â€acetylglucosamine in <i>Saccharomyces cerevisiae</i> by reducing glycolytic flux. Biotechnology and Bioengineering, 2016, 113, 2524-2528.	3.3	21
46	13C metabolite profiling to compare the central metabolic flux in two yeast strains. Biotechnology and Bioprocess Engineering, 2016, 21, 814-822.	2.6	4
47	An isolated Amycolatopsis sp. GDS for cellulase and xylanase production using agricultural waste biomass. Journal of Applied Microbiology, 2016, 120, 112-125.	3.1	33
48	Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli. Metabolic Engineering, 2016, 38, 401-408.	7.0	48
49	Plasmonic-based colorimetric and spectroscopic discrimination of acetic and butyric acids produced by different types of Escherichia coli through the different assembly structures formation of gold nanoparticles. Analytica Chimica Acta, 2016, 933, 196-206.	5.4	5
50	Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity. Bioresource Technology, 2016, 218, 1208-1214.	9.6	26
51	Microbial production of ethanol from acetate by engineered Ralstonia eutropha. Biotechnology and Bioprocess Engineering, 2016, 21, 402-407.	2.6	31
52	Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production. Bioresource Technology, 2016, 205, 90-96.	9.6	63
53	Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. Biotechnology for Biofuels, 2015, 8, 106.	6.2	34
54	A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Metabolic Engineering, 2015, 28, 143-150.	7.0	84

#	Article	IF	CITATIONS
55	Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid. Applied Microbiology and Biotechnology, 2015, 99, 5217-5225.	3.6	31
56	Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. International Journal of Biological Macromolecules, 2015, 80, 627-635.	7.5	105
57	Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization. Biotechnology and Bioprocess Engineering, 2015, 20, 733-743.	2.6	30
58	Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC Advances, 2015, 5, 97171-97179.	3.6	54
59	Isotope labeling pattern study of central carbon metabolites using GC/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 974, 101-108.	2.3	18
60	Improved resistance against oxidative stress of engineered cellobiose-fermenting Saccharomyces cerevisiae revealed by metabolite profiling. Biotechnology and Bioprocess Engineering, 2014, 19, 951-957.	2.6	3
61	The regulation of 2,3-butanediol synthesis in Klebsiella pneumoniae as revealed by gene over-expressions and metabolic flux analysis. Bioprocess and Biosystems Engineering, 2014, 37, 343-353.	3.4	13
62	Increased 2,3â€butanediol production by changing codon usages in <i><scp>E</scp>scherichia coli</i> . Biotechnology and Applied Biochemistry, 2014, 61, 535-540.	3.1	9
63	l-Lactate Production from Seaweed Hydrolysate of Laminaria japonica Using Metabolically Engineered Escherichia coli. Applied Biochemistry and Biotechnology, 2014, 172, 1938-1952.	2.9	24
64	Biosynthesis of 2-phenylethanol from glucose with genetically engineered Kluyveromyces marxianus. Enzyme and Microbial Technology, 2014, 61-62, 44-47.	3.2	66
65	Robust ZnO nanoparticle embedded memory device using vancomycin conjugate and its biorecognition for electrical charging node. Biosensors and Bioelectronics, 2014, 56, 33-38.	10.1	16
66	Cellulolytic Enzymes Production by Utilizing Agricultural Wastes Under Solid State Fermentation and its Application for Biohydrogen Production. Applied Biochemistry and Biotechnology, 2014, 174, 2801-2817.	2.9	60
67	Improvement of 2,3-Butanediol Yield in Klebsiella pneumoniae by Deletion of the Pyruvate Formate-Lyase Gene. Applied and Environmental Microbiology, 2014, 80, 6195-6203.	3.1	53
68	Succinate production from CO2-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing. Scientific Reports, 2014, 4, 5819.	3.3	40
69	Redistribution of Carbon Flux toward 2,3-Butanediol Production in Klebsiella pneumoniae by Metabolic Engineering. PLoS ONE, 2014, 9, e105322.	2.5	17
70	Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Bioresource Technology, 2013, 139, 21-27.	9.6	47
71	In Situ Biphasic Extractive Fermentation for Hexanoic Acid Production from Sucrose by Megasphaera elsdenii NCIMB 702410. Applied Biochemistry and Biotechnology, 2013, 171, 1094-1107.	2.9	85
72	Transcriptomic study for screening genes involved in the oxidative bioconversions of Streptomyces avermitilis. Bioprocess and Biosystems Engineering, 2013, 36, 1621-1630.	3.4	2

#	Article	IF	CITATIONS
73	Enhanced activity of meso-secondary alcohol dehydrogenase from Klebsiella species by codon optimization. Bioprocess and Biosystems Engineering, 2013, 36, 1005-1010.	3.4	1
74	Artificial transcription regulator as a tool for improvement of cellular property in Saccharomyces cerevisiae. Chemical Engineering Science, 2013, 103, 42-49.	3.8	5
75	Observation of 2,3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumoniae at gene transcription level. Journal of Biotechnology, 2013, 168, 520-526.	3.8	14
76	Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresource Technology, 2013, 136, 329-336.	9.6	72
77	Complete Genome Sequence of Raoultella ornithinolytica Strain B6, a 2,3-Butanediol-Producing Bacterium Isolated from Oil-Contaminated Soil. Genome Announcements, 2013, 1, .	0.8	22
78	Butyrate production in engineered <i>Escherichia coli</i> with synthetic scaffolds. Biotechnology and Bioengineering, 2013, 110, 2790-2794.	3.3	88
79	Complete Genome Sequence of the 2,3-Butanediol-Producing Klebsiella pneumoniae Strain KCTC 2242. Journal of Bacteriology, 2012, 194, 2736-2737.	2.2	42
80	Complete Genome Sequence of Klebsiella oxytoca KCTC 1686, Used in Production of 2,3-Butanediol. Journal of Bacteriology, 2012, 194, 2371-2372.	2.2	27
81	Complete Genome Sequence of Enterobacter aerogenes KCTC 2190. Journal of Bacteriology, 2012, 194, 2373-2374.	2.2	45
82	Logic circuit upon angiogenic response controlled by enzyme-linked iron oxide microparticles—towards biocomputing in human cells. Chemical Communications, 2012, 48, 6918.	4.1	3
83	A sensitive and reliable detection of thrombin via enzyme-precipitate-coating-linked aptamer assay. Chemical Communications, 2012, 48, 5971.	4.1	12
84	Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microbial Cell Factories, 2012, 11, 68.	4.0	132
85	Characterization of <i>GCY1</i> in <i>Saccharomyces cerevisiae</i> by metabolic profiling. Journal of Applied Microbiology, 2012, 113, 1468-1478.	3.1	18
86	Photosensitizer and vancomycin-conjugated novel multifunctional magnetic particles as photoinactivation agents for selective killing of pathogenic bacteria. Chemical Communications, 2012, 48, 4591.	4.1	74
87	Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Applied Microbiology and Biotechnology, 2012, 95, 461-469.	3.6	88
88	Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds. Bioresource Technology, 2012, 114, 450-456.	9.6	23
89	Label-free detection of bacterial RNA using polydiacetylene-based biochip. Biosensors and Bioelectronics, 2012, 35, 44-49.	10.1	40
90	Oxidation effects on CuInxGa1-xSeyS2-y thin film growth by solution processes. Thin Solid Films, 2012, 520, 3048-3053.	1.8	5

#	Article	IF	CITATIONS
91	Identification of Factors Regulating Escherichia coli 2,3-Butanediol Production by Continuous Culture and Metabolic Flux Analysis. Journal of Microbiology and Biotechnology, 2012, 22, 659-667.	2.1	8
92	Enhanced 2,3-Butanediol Production in Recombinant Klebsiella pneumoniae via Overexpression of Synthesis-Related Genes. Journal of Microbiology and Biotechnology, 2012, 22, 1258-1263.	2.1	48
93	A comparative study of solution based CIGS thin film growth on different glass substrates. Applied Surface Science, 2011, 258, 120-125.	6.1	18
94	Nearly carbon-free printable CIGS thin films for solar cell applications. Solar Energy Materials and Solar Cells, 2011, 95, 2928-2932.	6.2	71
95	A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme. Enzyme and Microbial Technology, 2011, 49, 441-445.	3.2	55
96	Enzyme precipitate coatings of lipase on polymer nanofibers. Bioprocess and Biosystems Engineering, 2011, 34, 841-847.	3.4	13
97	Proteomic approach to enhance doxorubicin production in panK-integrated Streptomyces peucetius ATCC 27952. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1245-1253.	3.0	10
98	Size-controllable quartz nanostructure for signal enhancement of DNA chip. Biosensors and Bioelectronics, 2011, 26, 2085-2089.	10.1	13
99	Effects of carbon source and metabolic engineering on butyrate production in Escherichia coli. Korean Journal of Chemical Engineering, 2011, 28, 1587-1592.	2.7	12
100	Enzyme Logic Gates Based on Enzyme oated Carbon Nanotubes. Electroanalysis, 2011, 23, 980-986.	2.9	18
101	Steganography and encrypting based on immunochemical systems. Biotechnology and Bioengineering, 2011, 108, 1100-1107.	3.3	21
102	Highly stable enzyme precipitate coatings and their electrochemical applications. Biosensors and Bioelectronics, 2011, 26, 1980-1986.	10.1	54
103	Sensitive and high-fidelity electrochemical immunoassay using carbon nanotubes coated with enzymes and magnetic nanoparticles. Biosensors and Bioelectronics, 2011, 26, 3192-3199.	10.1	37
104	Production of 1,2-Propanediol from Glycerol in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology, 2011, 21, 846-853.	2.1	55
105	Colorimetric Detection of Chelating Agents Using Polydiacetylene Vesicles. Korean Chemical Engineering Research, 2011, 49, 348-351.	0.2	1
106	Overexpression of ethionine resistance gene for maximized production of S-adenosylmethionine in Saccharomyces cerevisiae sake kyokai No. 6. Korean Journal of Chemical Engineering, 2010, 27, 587-589.	2.7	11
107	Electrochemical detection of vascular endothelial growth factors (VEGFs) using VEGF antibody fragments modified Au NPs/ITO electrode. Biosensors and Bioelectronics, 2010, 25, 1717-1722.	10.1	38

108 Immobilized polydiacetylene vesicle for label-free biosensor. , 2010, , .

#	Article	IF	CITATIONS
109	Increased production of S-adenosyl-L-methionine using recombinant Saccharomyces cerevisiae sake K6. Korean Journal of Chemical Engineering, 2009, 26, 156-159.	2.7	14
110	A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. Biosensors and Bioelectronics, 2009, 24, 3550-3555.	10.1	88
111	Development of a Saccharomyces cerevisiae strain for the production of 1,2-propanediol by gene manipulation. Enzyme and Microbial Technology, 2009, 45, 42-47.	3.2	15
112	The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates. Nanotechnology, 2009, 20, 175503.	2.6	50
113	Effect of phospholipid insertion on arrayed polydiacetylene biosensors. Colloids and Surfaces B: Biointerfaces, 2008, 66, 213-217.	5.0	52
114	Finding new pathway-specific regulators by clustering method using threshold standard deviation based on DNA chip data of Streptomyces coelicolor. Applied Microbiology and Biotechnology, 2008, 80, 709-717.	3.6	11
115	Improved DNA chip with poly(amidoamine) dendrimer peripherally modified with biotin and avidin. Biotechnology and Bioprocess Engineering, 2008, 13, 683-689.	2.6	14
116	Expression profiling of Streptomyces peucetius metabolic genes using DNA microarray analysis. Biotechnology and Bioprocess Engineering, 2008, 13, 738-744.	2.6	6
117	Rapid functional identification of putative genes based on the combined in vitro protein synthesis with mass spectrometry: A tool for functional genomics. Analytical Biochemistry, 2008, 375, 11-17.	2.4	8
118	Enhanced Production of 1,2-Propanediol by tpi1 Deletion in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology, 2008, 18, 1797-1802.	2.1	25
119	Parallel analysis of antimicrobial activities in microbial community by SSCP based on CE. Electrophoresis, 2007, 28, 2416-2423.	2.4	19
120	Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expression and Purification, 2006, 47, 203-209.	1.3	48
121	Micro-patterned polydiacetylene vesicle chips for detecting protein-protein interactions. Macromolecular Research, 2006, 14, 483-485.	2.4	41
122	Fabrication of disposable protein chip for simultaneous sample detection. Biotechnology and Bioprocess Engineering, 2006, 11, 455-461.	2.6	6
123	DNA microarray analysis of immediate response to EGF treatment in rat schwannoma cells. Biotechnology and Bioprocess Engineering, 2005, 10, 444-450.	2.6	3
124	Genetic heterogeneity of stably transfected cell lines revealed by expression profiling with oligonucleotide microarrays. Journal of Cellular Biochemistry, 2003, 90, 1068-1078.	2.6	14
125	Spinocerebellar Ataxia 11 (SCA11). , 2003, , 117-119.		0
126	Global Expression Profiling of Acetate-grown Escherichia coli. Journal of Biological Chemistry, 2002, 277, 13175-13183.	3.4	252

#	Article	IF	CITATIONS
127	Co-expression pattern from DNA microarray experiments as a tool for operon prediction. Nucleic Acids Research, 2002, 30, 2886-2893.	14.5	116
128	Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. Current Opinion in Microbiology, 2001, 4, 330-335.	5.1	51
129	Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Research, 2001, 29, 2549-2557.	14.5	494
130	DNA Microarray Detection of Metabolic Responses to Protein Overproduction in Escherichia coli. Metabolic Engineering, 2000, 2, 201-209.	7.0	84
131	Gene Expression Profiling by DNA Microarrays and Metabolic Fluxes in Escherichia coli. Biotechnology Progress, 2000, 16, 278-286.	2.6	126
132	Directed Evolution of Metabolically Engineered Escherichia coli for Carotenoid Production. Biotechnology Progress, 2000, 16, 922-926.	2.6	106
133	Toward Predicting Metabolic Fluxes in Metabolically Engineered Strains. Metabolic Engineering, 1999, 1, 214-223.	7.0	14
134	Engineered isoprenoid pathway enhances astaxanthin production inEscherichia coli. , 1999, 62, 235-241.		152
135	Importance of spore mutants for fed-batch and continuous fermentation ofBacillus subtilis. Biotechnology and Bioengineering, 1995, 47, 696-702.	3.3	14
136	Enhanced Subtilisin Production with Spore Mutants of Bacillus subtilis and Their Characterization. Annals of the New York Academy of Sciences, 1995, 750, 444-451.	3.8	6