
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6728005/publications.pdf Version: 2024-02-01

Ни Нилос

#	Article	IF	CITATIONS
1	Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science, 2015, 347, 970-974.	6.0	3,803
2	Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22, 24230.	6.7	2,339
3	Waterâ€Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie - International Edition, 2010, 49, 4430-4434.	7.2	2,258
4	A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 2014, 5, 4596.	5.8	1,141
5	One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 2011, 49, 605-609.	5.4	783
6	Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Transactions, 2012, 41, 9526.	1.6	684
7	Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. Journal of Materials Chemistry, 2012, 22, 10501.	6.7	676
8	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ O ₃ /g ₃ N ₄ Zâ€6cheme Catalysts. Advanced Ener Materials, 2017, 7, 1700025.	gy 10.2	664
9	One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New Journal of Chemistry, 2012, 36, 861.	1.4	493
10	Carbon Quantum Dot/NiFe Layered Double-Hydroxide Composite as a Highly Efficient Electrocatalyst for Water Oxidation. ACS Applied Materials & Interfaces, 2014, 6, 7918-7925.	4.0	440
11	C ₃ N—A 2D Crystalline, Holeâ€Free, Tunableâ€Narrowâ€Bandgap Semiconductor with Ferromagnetic Properties. Advanced Materials, 2017, 29, 1605625.	11.1	350
12	Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. Journal of Materials Chemistry, 2012, 22, 17470.	6.7	322
13	Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Transactions, 2011, 40, 10822.	1.6	304
14	Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy and Environmental Science, 2014, 7, 1409.	15.6	288
15	Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale, 2013, 5, 3289.	2.8	283
16	Carbon quantum dot sensitized TiO2 nanotube arrays for photoelectrochemical hydrogen generation under visible light. Nanoscale, 2013, 5, 2274.	2.8	281
17	Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Applied Catalysis B: Environmental, 2017, 206, 501-509.	10.8	270
18	Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline. Chemical Engineering Journal, 2018, 337, 228-241.	6.6	246

Ηυι Ηυανς

#	Article	IF	CITATIONS
19	Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity. ACS Applied Materials & Interfaces, 2018, 10, 26936-26946.	4.0	246
20	Facile fabrication of a CoO/g-C ₃ N ₄ p–n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catalysis Science and Technology, 2017, 7, 3325-3331.	2.1	224
21	Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Applied Catalysis B: Environmental, 2017, 216, 114-121.	10.8	217
22	Study on highly enhanced photocatalytic tetracycline degradation of type â; Agl/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts. Journal of Hazardous Materials, 2018, 349, 111-118.	6.5	213
23	Advances in carbon dots: from the perspective of traditional quantum dots. Materials Chemistry Frontiers, 2020, 4, 1586-1613.	3.2	208
24	A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nature Communications, 2021, 12, 483.	5.8	193
25	Bioinspired Bifunctional Membrane for Efficient Clean Water Generation. ACS Applied Materials & Interfaces, 2016, 8, 772-779.	4.0	187
26	Carbon dots promote the growth and photosynthesis of mung bean sprouts. Carbon, 2018, 136, 94-102.	5.4	182
27	Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Applied Catalysis B: Environmental, 2019, 242, 178-185.	10.8	174
28	Carbon quantum dots enhance the photocatalytic performance of BiVO4 with different exposed facets. Dalton Transactions, 2013, 42, 6285.	1.6	164
29	Fluorescent N-doped carbon dots for both cellular imaging and highly-sensitive catechol detection. Carbon, 2015, 91, 66-75.	5.4	161
30	Carbon dots/g-C3N4/ZnO nanocomposite as efficient visible-light driven photocatalyst for tetracycline total degradation. Separation and Purification Technology, 2017, 173, 295-303.	3.9	156
31	Reducing the charging voltage of a Li–O ₂ battery to 1.9 V by incorporating a photocatalyst. Energy and Environmental Science, 2015, 8, 2664-2667.	15.6	147
32	Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging. Journal of Materials Chemistry B, 2015, 3, 6813-6819.	2.9	144
33	Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New Journal of Chemistry, 2011, 35, 2666.	1.4	143
34	Impacts of Carbon Dots on Rice Plants: Boosting the Growth and Improving the Disease Resistance. ACS Applied Bio Materials, 2018, 1, 663-672.	2.3	143
35	Carbon Dots as Fillers Inducing Healing/Selfâ€Healing and Anticorrosion Properties in Polymers. Advanced Materials, 2017, 29, 1701399.	11.1	142
36	A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nature Communications, 2017, 8, 1828.	5.8	140

#	Article	IF	CITATIONS
37	Biocompatible Chitosan–Carbon Dot Hybrid Nanogels for NIR-Imaging-Guided Synergistic Photothermal–Chemo Therapy. ACS Applied Materials & Interfaces, 2017, 9, 18639-18649.	4.0	137
38	One-step conversion from metal–organic frameworks to Co3O4@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts. Journal of Materials Chemistry A, 2014, 2, 8184.	5.2	130
39	Intrinsic "Vacancy Point Defect―Induced Electrochemiluminescence from Coreless Supertetrahedral Chalcogenide Nanocluster. Journal of the American Chemical Society, 2016, 138, 7718-7724.	6.6	128
40	One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 2018, 10, 12734-12742.	2.8	128
41	Advances, challenges and promises of carbon dots. Inorganic Chemistry Frontiers, 2017, 4, 1963-1986.	3.0	127
42	Mesoporous nitrogen, sulfur co-doped carbon dots/CoS hybrid as an efficient electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2017, 5, 2717-2723.	5.2	126
43	Fluorescent N-Doped Carbon Dots as <i>in Vitro</i> and <i>in Vivo</i> Nanothermometer. ACS Applied Materials & amp; Interfaces, 2015, 7, 27324-27330.	4.0	122
44	Gramâ€Scale Synthesis of 41% Efficient Singleâ€Component Whiteâ€Lightâ€Emissive Carbonized Polymer Dots with Hybrid Fluorescence/Phosphorescence for White Lightâ€Emitting Diodes. Advanced Science, 2020, 7, 1902688.	5.6	122
45	Carbon dot and BiVO ₄ quantum dot composites for overall water splitting via a two-electron pathway. Nanoscale, 2016, 8, 17314-17321.	2.8	121
46	Tunable Ternary (N, P, B)-Doped Porous Nanocarbons and Their Catalytic Properties for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2014, 6, 22297-22304.	4.0	117
47	N,S co-doped carbon dots as a stable bio-imaging probe for detection of intracellular temperature and tetracycline. Journal of Materials Chemistry B, 2017, 5, 3293-3299.	2.9	117
48	Non-metal single/dual doped carbon quantum dots: a general flame synthetic method and electro-catalytic properties. Nanoscale, 2015, 7, 5955-5962.	2.8	116
49	Immobilization of Carbon Dots in Molecularly Imprinted Microgels for Optical Sensing of Glucose at Physiological pH. ACS Applied Materials & Interfaces, 2015, 7, 15735-15745.	4.0	112
50	Strategy for Activating Room-Temperature Phosphorescence of Carbon Dots in Aqueous Environments. Chemistry of Materials, 2019, 31, 7979-7986.	3.2	112
51	Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Applied Catalysis B: Environmental, 2020, 278, 119289.	10.8	110
52	Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability. Carbon, 2016, 99, 599-606.	5.4	108
53	Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy. Biomaterials, 2015, 53, 117-126.	5.7	105
54	Bioinspired Photoelectric Conversion System Based on Carbon-Quantum-Dot-Doped Dye–Semiconductor Complex. ACS Applied Materials & Interfaces, 2013, 5, 5080-5084.	4.0	103

#	Article	IF	CITATIONS
55	H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst. Chemical Engineering Journal, 2021, 420, 129722.	6.6	101
56	Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 19800-19807.	5.2	100
57	Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst. Nanoscale, 2014, 6, 867-873.	2.8	98
58	Carbon dots decorated the exposing high-reactive (111) facets CoO octahedrons with enhanced photocatalytic activity and stability for tetracycline degradation under visible light irradiation. Applied Catalysis B: Environmental, 2017, 219, 36-44.	10.8	96
59	Tuning Laccase Catalytic Activity with Phosphate Functionalized Carbon Dots by Visible Light. ACS Applied Materials & Interfaces, 2015, 7, 10004-10012.	4.0	95
60	Enhanced Activity for CO ₂ Electroreduction on a Highly Active and Stable Ternary Au-CDots-C ₃ N ₄ Electrocatalyst. ACS Catalysis, 2018, 8, 188-197.	5.5	94
61	Fabrication of a CuBi ₂ O ₄ /g-C ₃ N ₄ p–n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation. Inorganic Chemistry Frontiers, 2017, 4, 1714-1720.	3.0	93
62	High-yield fabrication of Ti ₃ C ₂ T _x MXene quantum dots and their electrochemiluminescence behavior. Nanoscale, 2018, 10, 14000-14004.	2.8	93
63	High-performance NiO/g-C ₃ N ₄ composites for visible-light-driven photocatalytic overall water splitting. Inorganic Chemistry Frontiers, 2018, 5, 1646-1652.	3.0	92
64	Bifunctional template-mediated synthesis of porous ordered g-C3N4 decorated with potassium and cyano groups for effective photocatalytic H2O2 evolution from dual-electron O2 reduction. Chemical Engineering Journal, 2022, 427, 132032.	6.6	92
65	Phosphorus-doped porous carbon nitride for efficient sole production of hydrogen peroxide <i>via</i> photocatalytic water splitting with a two-channel pathway. Journal of Materials Chemistry A, 2020, 8, 3701-3707.	5.2	89
66	A nickel nanoparticle/carbon quantum dot hybrid as an efficient electrocatalyst for hydrogen evolution under alkaline conditions. Journal of Materials Chemistry A, 2015, 3, 18598-18604.	5.2	87
67	Carbon Nanodot Surface Modifications Initiate Highly Efficient, Stable Catalysts for Both Oxygen Evolution and Reduction Reactions. Advanced Energy Materials, 2016, 6, 1502039.	10.2	83
68	Hydroxyl-Group-Dominated Graphite Dots Reshape Laser Desorption/Ionization Mass Spectrometry for Small Biomolecular Analysis and Imaging. ACS Nano, 2017, 11, 9500-9513.	7.3	79
69	One-step synthesis of chiral carbon quantum dots and their enantioselective recognition. RSC Advances, 2016, 6, 59956-59960.	1.7	78
70	Photocatalytic H ₂ O ₂ and H ₂ Generation from Living <i>Chlorella vulgaris</i> and Carbon Micro Particle Comodified gâ€C ₃ N ₄ . Advanced Energy Materials, 2018, 8, 1802525.	10.2	78
71	2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 554, 113-124.	5.0	77
72	Carbon dots-Pt modified polyaniline nanosheet grown on carbon cloth as stable and high-efficient electrocatalyst for hydrogen evolution in pH-universal electrolyte. Applied Catalysis B: Environmental, 2019, 257, 117905.	10.8	74

#	Article	IF	CITATIONS
73	Carbon Dots Derived from Citric Acid and Glutathione as a Highly Efficient Intracellular Reactive Oxygen Species Scavenger for Alleviating the Lipopolysaccharide-Induced Inflammation in Macrophages. ACS Applied Materials & Interfaces, 2020, 12, 41088-41095.	4.0	74
74	Enhanced RuBisCO activity and promoted dicotyledons growth with degradable carbon dots. Nano Research, 2019, 12, 1585-1593.	5.8	73
75	Mediator-free Z-scheme photocatalytic system based on ultrathin CdS nanosheets for efficient hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 13626-13635.	5.2	71
76	All-solid-state Z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting. Chemical Engineering Journal, 2019, 358, 134-142.	6.6	71
77	Carbon Quantum Dot/Silver Nanoparticle/Polyoxometalate Composites as Photocatalysts for Overall Water Splitting in Visible Light. ChemCatChem, 2014, 6, 2634-2641.	1.8	70
78	Carbon quantum dot/CuS _x nanocomposites towards highly efficient lubrication and metal wear repair. Nanoscale, 2015, 7, 11321-11327.	2.8	70
79	Matrix-Free and Highly Efficient Room-Temperature Phosphorescence of Nitrogen-Doped Carbon Dots. Langmuir, 2018, 34, 12845-12852.	1.6	69
80	Chiral evolution of carbon dots and the tuning of laccase activity. Nanoscale, 2018, 10, 2333-2340.	2.8	68
81	A 4e-–2e- cascaded pathway for highly efficient production of H2 and H2O2 from water photo-splitting at normal pressure. Applied Catalysis B: Environmental, 2020, 270, 118875.	10.8	68
82	Highâ€Safety and Lowâ€Cost Photoassisted Chargeable Aqueous Sodiumâ€Ion Batteries with 90% Input Electric Energy Savings. Advanced Energy Materials, 2016, 6, 1600632.	10.2	67
83	Control Strategy on Two-/Four-Electron Pathway of Water Splitting by Multidoped Carbon Based Catalysts. ACS Catalysis, 2017, 7, 1637-1645.	5.5	66
84	Carbon-Supported Oxygen Vacancy-Rich Co ₃ O ₄ for Robust Photocatalytic H ₂ O ₂ Production via Coupled Water Oxidation and Oxygen Reduction Reaction. ACS Applied Energy Materials, 2019, 2, 8737-8746.	2.5	66
85	Fluorescent carbon dots with tunable negative charges for bio-imaging in bacterial viability assessment. Carbon, 2017, 120, 95-102.	5.4	65
86	Preparation of g-C3N4 nanorod/InVO4 hollow sphere composite with enhanced visible-light photocatalytic activities. Applied Catalysis B: Environmental, 2017, 213, 127-135.	10.8	65
87	A Pt–Co ₃ O ₄ –CD electrocatalyst with enhanced electrocatalytic performance and resistance to CO poisoning achieved by carbon dots and Co ₃ O ₄ for direct methanol fuel cells. Nanoscale, 2017, 9, 5467-5474.	2.8	65
88	CuBi2O4 single crystal nanorods prepared by hydrothermal method: Growth mechanism and optical properties. Materials Research Bulletin, 2011, 46, 1443-1450.	2.7	62
89	Near-infrared light photocatalytic ability for degradation of tetracycline using carbon dots modified Ag/AgBr nanocomposites. Separation and Purification Technology, 2017, 174, 75-83.	3.9	62
90	Quantitative and real-time effects of carbon quantum dots on single living HeLa cell membrane permeability. Nanoscale, 2014, 6, 5116.	2.8	61

#	Article	IF	CITATIONS
91	Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Molecular Catalysis, 2020, 485, 110832.	1.0	61
92	Carbonâ€Dotâ€Based Whiteâ€Lightâ€Emitting Diodes with Adjustable Correlated Color Temperature Guided by Machine Learning. Angewandte Chemie - International Edition, 2021, 60, 12585-12590.	7.2	60
93	Cobalt phosphide/carbon dots composite as an efficient electrocatalyst for oxygen evolution reaction. Dalton Transactions, 2018, 47, 5459-5464.	1.6	58
94	Carbon Dots Enhance the Nitrogen Fixation Activity of Azotobacter Chroococcum. ACS Applied Materials & Interfaces, 2018, 10, 16308-16314.	4.0	57
95	Selective inactivation of Gram-negative bacteria by carbon dots derived from natural biomass: <i>Artemisia argyi</i> leaves. Journal of Materials Chemistry B, 2020, 8, 2666-2672.	2.9	57
96	Fluorescent carbon dots with highly negative charges as a sensitive probe for real-time monitoring of bacterial viability. Journal of Materials Chemistry B, 2017, 5, 6008-6015.	2.9	56
97	Maltase Decorated by Chiral Carbon Dots with Inhibited Enzyme Activity for Glucose Level Control. Small, 2019, 15, e1901512.	5.2	56
98	Nitrogen and sulfur co-doped chiral carbon quantum dots with independent photoluminescence and chirality. Inorganic Chemistry Frontiers, 2017, 4, 946-953.	3.0	55
99	Ultraâ€Bright and Stable Pure Blue Lightâ€Emitting Diode from O, N Coâ€Doped Carbon Dots. Laser and Photonics Reviews, 2021, 15, 2000412.	4.4	54
100	Charge storage of carbon dot enhances photo-production of H2 and H2O2 over Ni2P/carbon dot catalyst under normal pressure. Chemical Engineering Journal, 2021, 409, 128184.	6.6	54
101	One-step synthesis of CoO/g-C ₃ N ₄ composites by thermal decomposition for overall water splitting without sacrificial reagents. Inorganic Chemistry Frontiers, 2017, 4, 1691-1696.	3.0	53
102	Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. Journal of Materials Chemistry A, 2021, 9, 515-522.	5.2	53
103	Carbon dots from PEG for highly sensitive detection of levodopa. Journal of Materials Chemistry B, 2015, 3, 2378-2387.	2.9	52
104	Carbon-dots-mediated highly efficient hole transfer in I-III-VI quantum dots for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021, 292, 120154.	10.8	52
105	Porous cobalt, nitrogen-codoped carbon nanostructures from carbon quantum dots and VB12 and their catalytic properties for oxygen reduction. Physical Chemistry Chemical Physics, 2014, 16, 25350-25357.	1.3	51
106	New Insight of Water-Splitting Photocatalyst: H ₂ O ₂ -Resistance Poisoning and Photothermal Deactivation in Sub-micrometer CoO Octahedrons. ACS Applied Materials & Interfaces, 2017, 9, 20585-20593.	4.0	51
107	Carbon dots with positive surface charge from tartaric acid and <i>m</i> -aminophenol for selective killing of Gram-positive bacteria. Journal of Materials Chemistry B, 2021, 9, 125-130.	2.9	50
108	Pyrrolic nitrogen dominated the carbon dot mimic oxidase activity. Carbon, 2021, 179, 692-700.	5.4	50

#	Article	IF	CITATIONS
109	Cu-CDots nanocorals as electrocatalyst for highly efficient CO ₂ reduction to formate. Nanoscale, 2017, 9, 298-304.	2.8	49
110	Degradable Carbon Dots from Cigarette Smoking with Broad-Spectrum Antimicrobial Activities against Drug-Resistant Bacteria. ACS Applied Bio Materials, 2018, 1, 1871-1879.	2.3	49
111	Role of Pt-pyridinic nitrogen sites in methanol oxidation on Pt/polypyrrole-carbon black Catalyst. Journal of Power Sources, 2012, 197, 44-49.	4.0	48
112	Chiral Control of Carbon Dots via Surface Modification for Tuning the Enzymatic Activity of Glucose Oxidase. ACS Applied Materials & Interfaces, 2021, 13, 5877-5886.	4.0	48
113	Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst. Applied Catalysis B: Environmental, 2018, 237, 166-174.	10.8	46
114	Negatively Charged Carbon Nanodots with Bacteria Resistance Ability for Highâ€Performance Antibiofilm Formation and Anticorrosion Coating Design. Small, 2019, 15, e1900007.	5.2	46
115	Template-free fabrication of mesoporous carbons from carbon quantum dots and their catalytic application to the selective oxidation of hydrocarbons. Nanoscale, 2014, 6, 5831.	2.8	45
116	Carbon Defect-Induced Reversible Carbon–Oxygen Interfaces for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2018, 10, 39735-39744.	4.0	45
117	Pristine Carbon Dots Boost the Growth of <i>Chlorella vulgaris</i> by Enhancing Photosynthesis. ACS Applied Bio Materials, 2018, 1, 894-902.	2.3	45
118	Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation. Journal of Energy Chemistry, 2022, 66, 61-67.	7.1	45
119	Robust carbon-dot-based evaporator with an enlarged evaporation area for efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 14566-14573.	5.2	44
120	Cascaded photo-potential in a carbon dot-hematite system driving overall water splitting under visible light. Nanoscale, 2018, 10, 2454-2460.	2.8	43
121	Synergistic Cu@CoOx core-cage structure on carbon layers as highly active and durable electrocatalysts for methanol oxidation. Applied Catalysis B: Environmental, 2019, 244, 795-801.	10.8	42
122	A function-switchable metal-free photocatalyst for the efficient and selective production of hydrogen and hydrogen peroxide. Journal of Materials Chemistry A, 2020, 8, 11773-11780.	5.2	42
123	Tunable synthesis of metal–graphene complex nanostructures and their catalytic ability for solvent-free cyclohexene oxidation in air. Nanoscale, 2012, 4, 4964.	2.8	41
124	A g-C ₃ N ₄ based photoelectrochemical cell using O ₂ /H ₂ O redox couples. Energy and Environmental Science, 2018, 11, 1841-1847.	15.6	41
125	Polyaniline/Carbon Dots Composite as a Highly Efficient Metal-Free Dual-Functional Photoassisted Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 24814-24823.	4.0	41
126	In-situ transient photovoltage study on interface electron transfer regulation of carbon dots/NiCo2O4 photocatalyst for the enhanced overall water splitting activity. Nano Research, 2022, 15, 1786-1795.	5.8	41

#	Article	IF	CITATIONS
127	Z-Scheme in a Co ₃ (PO ₄) ₂ (α-Fe ₂ O ₃ photocatalysis system for overall water splitting under visible light. Catalysis Science and Technology, 2018, 8, 840-846.	2.1	39
128	Hydrogen peroxide-impregnated supramolecular precursors synthesize mesoporous-rich ant nest-like filled tubular g-C3N4 for effective photocatalytic removal of pollutants. Chemical Engineering Journal, 2022, 447, 137332.	6.6	39
129	Strong coupling effect at the interface of cobalt phosphate-carbon dots boost photocatalytic water splitting. Journal of Colloid and Interface Science, 2018, 530, 256-263.	5.0	38
130	Silver modified carbon quantum dots for solvent-free selective oxidation of cyclohexane. New Journal of Chemistry, 2015, 39, 2815-2821.	1.4	37
131	Highly Selective and Efficient Electroreduction of Carbon Dioxide to Carbon Monoxide with Phosphate Silver-Derived Coral-like Silver. ACS Sustainable Chemistry and Engineering, 2019, 7, 3536-3543.	3.2	35
132	Si-assisted N, P Co-doped room temperature phosphorescent carbonized polymer Dots: Information Encryption, graphic Anti-counterfeiting and biological imaging. Journal of Colloid and Interface Science, 2022, 609, 279-288.	5.0	35
133	Carbon dots for photoswitching enzyme catalytic activity. Journal of Materials Chemistry B, 2014, 2, 5652.	2.9	34
134	Photo-charge regulation of metal-free photocatalyst by carbon dots for efficient and stable hydrogen peroxide production. Journal of Materials Chemistry A, 2021, 9, 25453-25462.	5.2	34
135	Carbon Dots Enable Efficient Delivery of Functional DNA in Plants. ACS Applied Bio Materials, 2020, 3, 8857-8864.	2.3	33
136	Air activation by a metal-free photocatalyst for "totally-green―hydrocarbon selective oxidation. Catalysis Science and Technology, 2016, 6, 7252-7258.	2.1	32
137	Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. Journal of Materials Chemistry B, 2018, 6, 5708-5717.	2.9	32
138	Oxygen Containing Functional Groups Dominate the Electrochemiluminescence of Pristine Carbon Dots. Journal of Physical Chemistry C, 2017, 121, 27546-27554.	1.5	31
139	Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance. Nano Research, 2021, 14, 3886-3892.	5.8	31
140	A practical and highly sensitive C ₃ N ₄ -TYR fluorescent probe for convenient detection of dopamine. Nanoscale, 2015, 7, 12068-12075.	2.8	30
141	A nitrogen and boron co-doped metal-free carbon electrocatalyst for an efficient oxygen reduction reaction. Inorganic Chemistry Frontiers, 2018, 5, 2985-2991.	3.0	30
142	A Bright and Stable Violet Carbon Dot Lightâ€Emitting Diode. Advanced Optical Materials, 2020, 8, 2000239.	3.6	30
143	N-doped carbon dots derived from leaves with low toxicity via damaging cytomembrane for broad-spectrum antibacterial activity. Materials Today Communications, 2020, 24, 101222.	0.9	30
144	One-step synthesis of MnOx/g-C3N4 nanocomposites for enhancing the visible light photoelectrochemical oxidation performance. Chemical Engineering Journal, 2020, 399, 125825.	6.6	29

#	Article	IF	CITATIONS
145	Amino Modified Carbon Dots with Electron Sink Effect Increase Interface Charge Transfer Rate of Cuâ€Based Electrocatalyst to Enhance the CO ₂ Conversion Selectivity to C ₂ H ₄ . Advanced Functional Materials, 2022, 32, .	7.8	29
146	Third-order nonlinear optical properties of carboxyl group dominant carbon nanodots. Journal of Materials Chemistry C, 2016, 4, 8490-8495.	2.7	28
147	C–O ^{â^'} –K ⁺ (Na ⁺) groups in non-doped carbon as active sites for the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 8955-8961.	5.2	28
148	Efficient photocatalytic water splitting through titanium silicalite stabilized CoO nanodots. Nanoscale, 2019, 11, 15984-15990.	2.8	28
149	Biotoxicity of degradable carbon dots towards microalgae <i>Chlorella vulgaris</i> . Environmental Science: Nano, 2019, 6, 3316-3323.	2.2	28
150	Ag–In–Zn–S Quantum Dot-Dominated Interface Kinetics in Ag–In–Zn–S/NiFe LDH Composites towa Efficient Photoassisted Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 42125-42137.	ard 4.0	26
151	Highly efficient metal-free catalyst from cellulose for hydrogen peroxide photoproduction instructed by machine learning and transient photovoltage technology. Nano Research, 2022, 15, 4000-4007.	5.8	26
152	N-Doped carbon dot with surface dominant non-linear optical properties. RSC Advances, 2016, 6, 95476-95482.	1.7	25
153	Carbon quantum dot-covered porous Ag with enhanced activity for selective electroreduction of CO ₂ to CO. Inorganic Chemistry Frontiers, 2019, 6, 1453-1460.	3.0	25
154	Carbon dot-modified mesoporous carbon as a supercapacitor with enhanced light-assisted capacitance. Nanoscale, 2020, 12, 17925-17930.	2.8	25
155	Tree-inspired ultra-rapid steam generation and simultaneous energy harvesting under weak illumination. Journal of Materials Chemistry A, 2020, 8, 10260-10268.	5.2	25
156	Carbon dots/PtW6O24 composite as efficient and stable electrocatalyst for hydrogen oxidation reaction in PEMFCs. Chemical Engineering Journal, 2021, 426, 130709.	6.6	25
157	Rational construction of hierarchical porous FeP nanorod arrays encapsulated in polypyrrole for efficient and durable hydrogen evolution reaction. Chemical Engineering Journal, 2022, 433, 133643.	6.6	25
158	Replacing Ru complex with carbon dots over MOF-derived Co ₃ O ₄ /In ₂ O ₃ catalyst for efficient solar-driven CO ₂ reduction. Journal of Materials Chemistry A, 2022, 10, 4279-4287.	5.2	25
159	Nitrogen-doped carbon dots coupled with morin-Al3+: Cleverly design an integrated sensing platform for ratiometric optical dual-mode and smartphone-assisted visual detection of fluoride ion. Journal of Hazardous Materials, 2022, 439, 129596.	6.5	25
160	Facile synthesis of ultrahigh fluorescence N,S-self-doped carbon nanodots and their multiple applications for H ₂ S sensing, bioimaging in live cells and zebrafish, and anti-counterfeiting. Nanoscale, 2020, 12, 20482-20490.	2.8	24
161	Organic Semiconductor/Carbon Dot Composites for Highly Efficient Hydrogen and Hydrogen Peroxide Coproduction from Water Photosplitting. ACS Applied Materials & Interfaces, 2021, 13, 60561-60570.	4.0	24
162	Precise mono-Cu ⁺ ion doping enhanced electrogenerated chemiluminescence from Cd–In–S supertetrahedral chalcogenide nanoclusters for dopamine detection. Nanoscale, 2018, 10, 15932-15937.	2.8	22

#	Article	IF	CITATIONS
163	A di-functional and label-free carbon-based chem-nanosensor for real-time monitoring of pH fluctuation and quantitative determining of Curcumin. Analytica Chimica Acta, 2019, 1057, 132-144.	2.6	22
164	Simple Semiempirical Method for the Location Determination of HOMO and LUMO of Carbon Dots. Journal of Physical Chemistry C, 2021, 125, 7451-7457.	1.5	22
165	Nitrogen, phosphorus co-doped carbon dots/CoS ₂ hybrid for enhanced electrocatalytic hydrogen evolution reaction. RSC Advances, 2016, 6, 66893-66899.	1.7	21
166	Metal-Free Catalyst with Large Carbon Defects for Efficient Direct Overall Water Splitting in Air at Room Pressure. ACS Applied Materials & Interfaces, 2020, 12, 30280-30288.	4.0	21
167	Converting water impurity in organic solvent into hydrogen and hydrogen peroxide by organic semiconductor photocatalyst. Applied Catalysis B: Environmental, 2022, 305, 121047.	10.8	21
168	A nickel-modified polyoxometalate towards a highly efficient catalyst for selective oxidation of hydrocarbons. Journal of Materials Chemistry A, 2014, 2, 12686.	5.2	20
169	Cobalt oxyhydroxide and carbon dots modified by platinum as superior electrocatalyst for methanol oxidation. Materials Chemistry and Physics, 2019, 225, 64-71.	2.0	20
170	Water-solvable carbon dots derived from curcumin and citric acid with enhanced broad-spectrum antibacterial and antibiofilm activity. Materials Today Communications, 2021, 26, 102000.	0.9	20
171	Nitrogen-doped carbon dots for wash-free imaging of nucleolus orientation. Mikrochimica Acta, 2021, 188, 183.	2.5	20
172	Transient photovoltage study of the kinetics and synergy of electron/hole co-extraction in MoS2/Ag-In-Zn-S/carbon dot photocatalysts for promoted hydrogen production. Chemical Engineering Journal, 2022, 439, 135759.	6.6	20
173	Pyridine derivative-induced fluorescence in multifunctional modified carbon dots and their application in thermometers. Journal of Materials Chemistry B, 2017, 5, 3964-3969.	2.9	18
174	Hydroxyl-terminated carbon dots for efficient conversion of cyclohexane to adipic acid. Journal of Colloid and Interface Science, 2021, 591, 281-289.	5.0	18
175	Carbon dots with different energy levels regulate the activity of metal-free catalyst for hydrogen peroxide photoproduction. Journal of Colloid and Interface Science, 2022, 616, 769-780.	5.0	18
176	Photocatalytic Polymerization from Amino Acid to Protein by Carbon Dots at Room Temperature. ACS Applied Bio Materials, 2019, 2, 5144-5153.	2.3	17
177	Edible and highly biocompatible nanodots from natural plants for the treatment of stress gastric ulcers. Nanoscale, 2021, 13, 6809-6818.	2.8	17
178	Effective Low-Temperature Methanol Aqueous Phase Reforming with Metal-Free Carbon Dots/C ₃ N ₄ Composites. ACS Applied Materials & Interfaces, 2021, 13, 24702-24709.	4.0	16
179	Engineering a polyoxometalate-based metal organic framework with more exposed active edge sites of Ag for visible light-driven selective oxidation of <i>cis</i> -cyclooctene. Inorganic Chemistry Frontiers, 2018, 5, 2493-2500.	3.0	15
180	Homochiral metal–organic porous materials for enantioselective recognition and electrocatalysis. CrystEngComm, 2013, 15, 3288.	1.3	14

#	Article	IF	CITATIONS
181	Extraction of High-Quality Quantum Dot Photocatalysts via Combination of Size Selection and Electrochemiluminescence. ACS Sustainable Chemistry and Engineering, 2019, 7, 20043-20050.	3.2	14
182	Carbon dots modified WO2-NaxWO3 composite as UV-Vis-NIR broad spectrum-driven photocatalyst for overall water splitting. Catalysis Today, 2020, 340, 152-160.	2.2	14
183	Co/Co ₉ S ₈ nanoparticles coupled with N,S-doped graphene-based mixed-dimensional heterostructures as bifunctional electrocatalysts for the overall oxygen electrode. Inorganic Chemistry Frontiers, 2019, 6, 2558-2565.	3.0	13
184	Simultaneous enzymatic activity modulation and rapid determination of enzyme kinetics by highly crystalline graphite dots. Nanoscale, 2017, 9, 8410-8417.	2.8	12
185	Phosphorus-doped macroporous carbon spheres for high efficiency selective oxidation of cyclooctene by air. RSC Advances, 2014, 4, 22419.	1.7	11
186	Cold nanoparticle and carbon dot coated SnO ₂ nanocomposite with high photo-electronic catalytic activity for oxygen evolution reaction. Dalton Transactions, 2015, 44, 7318-7323.	1.6	10
187	A Novel CoO _{1.6} C _{0.7} Nanocomposite with Enhanced Photocatalytic Activity and Stability for Hydrogen Evolution Achieved by Carbon Dots. ChemistrySelect, 2018, 3, 904-910.	0.7	10
188	A novel fluorescence immunosensor based on Förster resonance energy transfer between nitrogen and sulfur co-doped carbon dot functionalized silica nanospheres and Au@Ag NPs. New Journal of Chemistry, 2019, 43, 1424-1430.	1.4	10
189	<i>Salvia miltiorrhiza</i> Derived Carbon Dots and Their Heat Stress Tolerance of Italian Lettuce by Promoting Growth and Enhancing Antioxidant Enzyme Activity. ACS Omega, 2021, 6, 32262-32269.	1.6	10
190	Chiral carbon dots – a functional domain for tyrosinase Cu active site modulation <i>via</i> remote target interaction. Nanoscale, 2022, 14, 1202-1210.	2.8	10
191	A carbon dot-based metal-free photocatalyst enables O ₂ to serve as both a reactant and electron sink for enhancing H ₂ O ₂ photoproduction. Journal of Materials Chemistry A, 2022, 10, 15074-15079.	5.2	10
192	One-step synthesis of ZnS-N/C nanocomposites derived from Zn-based chiral metal–organic frameworks with highly efficient photocatalytic activity for the selective oxidation of <i>cis</i> -cyclooctene. Inorganic Chemistry Frontiers, 2018, 5, 723-731.	3.0	9
193	Carbon dots with chiral surface selectively inhibit the activity of laccase. Applied Surface Science, 2022, 583, 152540.	3.1	9
194	Carbon dots up-regulate heme oxygenase-1 expression towards acute lung injury therapy. Journal of Materials Chemistry B, 2021, 9, 9005-9011.	2.9	8
195	Porous direct Z-scheme heterostructures of S-deficient CoS/CdS hexagonal nanoplates for robust photocatalytic H ₂ generation. CrystEngComm, 2022, 24, 404-416.	1.3	8
196	Size-dependent and real-time effect of SiO2 nanoparticles on a single living HeLa Cell's membrane permeability. Journal of Materials Chemistry B, 2015, 3, 1198-1203.	2.9	7
197	Investigation of Regeneration Kinetics of a Carbon-Dot-Sensitized Metal Oxide Semiconductor with Scanning Electrochemical Microscopy. ACS Applied Energy Materials, 2018, 1, 1483-1488.	2.5	7
198	ZIF/Co-C ₃ N ₄ with enhanced electrocatalytic reduction of carbon dioxide activity by the photoactivation process. Nanoscale, 2021, 13, 14089-14095.	2.8	7

#	Article	IF	CITATIONS
199	Continuous Homogeneous Catalytic Oxidation of C–H Bonds by Metal-Free Carbon Dots with a Poly(ascorbic acid) Structure. ACS Applied Materials & Interfaces, 2022, 14, 26682-26689.	4.0	7
200	Hofmann-like metal–organic-framework-derived Pt _x Fe/C/N-GC composites as efficient electrocatalysts for methanol oxidation. RSC Advances, 2019, 9, 26450-26455.	1.7	6
201	Highly stable and bright blue light-emitting diodes based on carbon dots with a chemically inert surface. Nanoscale Advances, 2021, 3, 6949-6955.	2.2	6
202	A metal-free catalyst for the efficient and stable one-step photocatalytic production of pure hydrogen peroxide. Catalysis Science and Technology, 2022, 12, 1837-1842.	2.1	6
203	Carbon dots promote the carrier recombination in Poly (9-vinyl carbazole) to enhance its electroluminescence. Applied Surface Science, 2022, 585, 152649.	3.1	5
204	Cu atomic clusters on N-doped porous carbon with tunable oxidation state for the highly-selective electroreduction of CO ₂ . Materials Advances, 2020, 1, 2286-2292.	2.6	4
205	Transition metal-directed assembly of diverse coordination polymers based on multifunctional ligand 2,4-dichloro-5-sulfamoylbenzoic acid. CrystEngComm, 2013, 15, 8483.	1.3	3
206	Ternary Os-Ag-Si electrocatalysts for hydrogen evolution are more efficient than Os-Au-Si. Journal of Colloid and Interface Science, 2019, 539, 257-262.	5.0	2
207	Diverse catalytic behavior of a dye-based polymer metal-free catalyst for hydrogen peroxide photoproduction. Materials Advances, 2022, 3, 4243-4251.	2.6	2